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1 Introduction

The Green Revolution was sparked by innovations in plant breeding and fueled by comple-
mentarities between improved seeds and other inputs. Improved crop genetics were strongly
complementary with inputs of chemical fertilizers and irrigation; in many contexts, they also
complemented agricultural labor. Realizing the potential yield gains of better crop germplasm
requires careful adjustment of other applied inputs (Foster and Rosenzweig, 1995). Hybrid
maize, for example, can produce dramatically higher yields than traditional varieties when op-
timally fertilized, but deviations from the optimum can rapidly reduce the economic returns
(Duflo, Kremer, and Robinson, 2008).

In the presence of such complementarities, farmers must know what seeds they have sown
in order to know how best to manage their crops. Inaccurate information or beliefs about the
seed type can impose direct or indirect costs on farmers via suboptimal input applications and
lower returns. Most obviously, farmers who erroneously believe that they are growing improved
seeds may purchase costly inputs in anticipation of high returns that are eventually unrealized.
Conversely, farmers who incorrectly believe that they are growing unimproved (traditional) crop
varieties may not purchase and apply inputs that could increase on-farm profits. In both cases,
farmers’ incorrect beliefs about the genetics of their seeds will lead to static inefficiencies in
the application of inputs. These losses relative to optimal input use, which are likely asymmet-
ric, are depicted in a conceptual model in the Appendix. Such input distortions are potentially
important for fertilizer applied to maize, the focus of this study: while increased nitrogen use
will, to a point, increase yield of both traditional and improved maize varieties, on the margin
improved varieties tend to be more nitrogen-responsive. Beyond static losses, incorrect beliefs
may also impose dynamic costs by undermining farmers’ ability to learn about and adopt prof-
itable technologies. Farmers may conclude that improved seeds and fertilizer represent poor
investments, for instance, if they incorrectly believe that they have been using both but have
experienced low or negative returns (Bold et al., 2017).

We draw on new data from Ethiopia in which we are able to compare farmer-reported seed
types to the true genetic identity of their seed.1 Ethiopia provides an interesting context for
this study because improved maize seeds and chemical fertilizers have diffused widely across
the country since the 1990s, in response to government programs, extension encouragement
and specific fertilizer recommendations (Spielman, Mekonnen, and Alemu, 2013; Abate et al.,
2015; Kosmowski et al., 2020). Official recommendations specifically encourage maize farmers
to use nitrogen fertilizers and implicitly reflect input complementarities by recommending more
nitrogen for hybrid (improved) maize than for non-hybrid maize (Abate et al., 2015). However,
the Ethiopian context is also characterized by limited seed system regulation as well as farmer
seed exchange and seed saving, which can introduce substantial on-farm uncertainty about the

1For a detailed discussion of this dataset and the novel insights it enables related to technology adoption see
Kosmowski et al. (2020).
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genetic makeup of the seeds farmers sow.

We find that (i) nearly one-third of Ethiopian maize farmers hold false beliefs; (ii) those
who falsely believe they sowed improved seed double or triple nitrogen fertilizer application,
adding an average of $84 (20 days wages) or more to their per hectare input costs; and (iii)
those who falsely believe that they are growing traditional seeds use half or less the level of
fertilizer chosen by farmers who correctly understand that their seeds are improved. The overall
implication is that significant quantities of fertilizer are likely to be inefficiently allocated, with
policy implications for seed systems and management of agricultural input supply chains. We
conduct a scaling exercise to project fertilizer overuse and underuse at the national level; the
results suggest that around 20,000-30,000 mt of nitrogen would be allocated differently if maize
farmers had correct beliefs about their seeds, an amount corresponding to roughly 4-6% of
Ethiopia’s total nitrogen use.

We join previous researchers in highlighting that mistaken seed beliefs also pose a problem
for researchers as a troubling source of non-classical measurement error (Abay, 2020; Abay,
Bevis, and Barrett, 2021; Abay et al., 2022, 2019). Out of necessity, the agricultural technol-
ogy adoption literature has historically relied exclusively on farmer self-reports about improved
seed use and on the (often problematic) assumption that new varieties are readily distinguish-
able from older ones (Macours, 2019). Genotyping advances now offer a compelling alterna-
tive. Samples taken from farmers’ fields can be DNA fingerprinted as a means of objective seed
varietal identification (Stevenson, Macours, and Gollin, 2018; Beegle, Carletto, and Himelein,
2012). This measurement innovation has enabled a number of empirical studies that document
how varietal types (e.g., improved or not) and names are commonly misperceived by farm-
ers, introducing measurement error in data based on self-reports. We build on this emerging
literature, which finds – across a variety of contexts and crops – that substantial fractions of
farmers hold false seed beliefs (Wineman et al., 2020; Maredia et al., 2016; Floro IV et al.,
2018; Yirga et al., 2016). Wossen, Abay, and Abdoulaye (2022) provide evidence that seed
misclassification is due to misperception (i.e., false beliefs) rather than intentionally misleading
misreporting, which we also assume throughout our analysis.

The link we test between seed beliefs and fertilizer use hinges on the fact that improved
seeds are generally more responsive to chemical fertilizer than seeds of lower genetic quality
(Ellis, 1992; Tolessa et al., 2001; Nyangena, Juma et al., 2014; Kassie et al., 2015).2 Farmers
are well aware of the complementarity between improved seed and chemical fertilizer, and of-
ficial fertilizer recommendations are typically higher for improved varieties.3 In our context,
Abay et al. (2018) show that improved maize seeds and fertilizer are strong production comple-

2This differential responsiveness for improved germplasm is often intentionally part of the breeding process,
but it may also arise as an artefact of the plant breeding process, since breeders often select improved varieties
based on their performance under growing conditions characterized by high levels of input use.

3In Ethiopia, fertilizer recommendations for hybrid maize are 20% higher than for other varieties (see Abate
et al., 2015).
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ments and that Ethiopian farmers understand this interaction and manage their maize production
accordingly.4

Our paper builds on two related sets of published studies. The first set consists of a pair of
“double blind” studies in Tanzania (Bulte et al., 2014, 2023), in which researchers distributed
improved and traditional seeds to farmers. Only a subset of farmers were told which seeds
they had received. All other farmers only knew that there was a 50/50 chance the seeds were
improved. Bulte et al. (2014) conduct this study with cowpea seeds and find that farmers who
know for certain or who know there is a 50/50 chance they are sowing improved seeds are
more attentive, exert greater effort and, consequently, produce high yields – even if they were
in fact growing a traditional cowpea variety. Farmers who knew they were sowing traditional
seeds produced significantly lower yields. In the follow-on study, Bulte et al. (2023) conducted
a similar study with maize seeds, improved varieties of which tend to exhibit much greater
productivity gains and stronger complementarities with other applied inputs (e.g., fertilizer) than
cowpea. In the face of uncertainty about the type of seeds they are sowing, farmers reduce labor
investments and thereby produce lower yields. Improved maize seeds are, however, superior
enough relative to traditional seeds that yields were higher with improved seeds despite these
reduced labor investments, albeit lower than when farmers knew they were sowing improved
seeds and could optimize their labor allocation accordingly.

In contrast to these two studies, we leverage the natural prevalence of false seed beliefs
among farmers, rather than artificially manipulating these beliefs. Because we can measure
with precision the extent of false beliefs in a nationally-representative sample of farmers, we
can show that this is a quantitatively important problem. Moreover, while the lack of pure
experimental variation in information complicates causal identification, we are able to observe
the choices that farmers make in real-world settings, using actual beliefs and studying the on-
farm decisions of farmers, strengthening the external validity of our study.

The second set of studies includes two papers that are closely related to ours but that address
different contexts where the issues raised are of lower salience or where data constraints limit
the external validity of the analysis. Wossen, Abay, and Abdoulaye (2022) use data from Nige-
rian cassava farmers to demonstrate how farmer misperceptions about cassava varietal quality
distort on-farm applications of fertilizer and herbicide and thereby likely introduce inefficien-
cies. We use a similar approach to test for distorted input applications in the context of maize
in Ethiopia. The change of case and context is important. Maize is a more input-intensive crop
than cassava; in many contexts in sub-Saharan Africa, fertilizer use on cassava tends to be much
lower than for maize.5 In our context, farmers are likely to be aware of the differential returns

4The inherent complexities of agricultural production introduce a host of other factors that affect fertilizer
responsiveness, including soils and rainfall (see Burke, Jayne, and Snapp, 2022; Roobroeck et al., 2021), that are
beyond the scope of this paper.

5As one recent review article put it, “In general, fertiliser use on roots and tuber crops in Sub-Saharan Africa is
negligible” (Ezui et al., 2016). However, the Cassava Monitoring Survey on which Wossen, Abay, and Abdoulaye
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that are expected to fertilizer applications on improved and traditional maize seed.

Our paper is also related to work by Wineman et al. (2020), who use a simple comparison
of mean input usage between farmers with correct and incorrect beliefs about the maize seeds
they sowed, in the context of Tanzania. Farmers who correctly report growing an improved
variety use more fertilizer and enjoy higher yields compared to those who do not. Because
this survey was constructed specifically to focus on narrow questions of varietal identification
and input use, the structure of the data is limited, particularly with respect to questions about
demographics and community variables. It is also unclear how well the sample represents the
national population.

In contrast, our data allow us to consider the same issues in the context of a nationally-
representative sample and a broad household survey that includes a richer set of household and
community characteristics than those used in previous studies. This is important, because false
belief about seed types is not randomly assigned, outside the experimental settings of Bulte
et al. (2014) and Bulte et al. (2023). However, our rich data set and methods allow us to control
for a broader set of observables than either (Wossen, Abay, and Abdoulaye, 2022) or (Wineman
et al., 2020). This allows us to address selection on observables, including the use of Post-
Double Selection (PDS) LASSO to optimize our choice of controls. The structure of our data
also allows us then to extrapolate the results of our analysis to project national level estimates
of varietal misidentification and input use.

Our analysis does not allow us to identify why farmers may hold false seed beliefs. Some
of the related literature has suggested widespread counterfeiting or adulteration of inputs at
some point in the supply chain (e.g., Bold et al., 2017). This is certainly possible. However,
other explanations are also plausible. Farmers may simply not be aware of the characteristics of
improved varieties (Kosmowski et al., 2019; Maredia et al., 2016). In our context, farmer-saved
maize seeds tend to lose their genetic purity over time (Ilukor et al., 2017). This is particularly
true of hybrid seeds, but to some degree also for non-hybrid improved maize known as open-
pollinated varieties (OPVs). Farmers who purchase seed in one season and save the seed for
replanting in following years will very quickly end up with seeds that are genetically unlike
the original improved variety, but they may continue to view the seeds as improved. Farmers
may also have purchased or been given seed that they understood, incorrectly, to be improved.
Somewhat more surprising are those farmers – reasonably numerous in our data – who are
growing improved seed without realizing it. These farmers may be growing OPVs, which
maintain their genetic purity fairly well over time. They may assume that since they have not
recently purchased seed, the genetic quality is unimproved. In this paper, we cannot explain the
reasons for misidentification, although we can identify a number of correlates and covariates,
as discussed below.

(2022) draw focuses on a purposively constructed sampling frame in Nigeria. In this sample, fertilizer use on
cassava is both widespread and sizeable.
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2 Data

We use data from the fourth wave of the Ethiopian Socioeconomic Survey (ESS4) to investigate
the effects of seed misclassification on input allocation. This survey uses a two-stage sam-
ple that is nationally representative.6 The ESS collects household data related to agricultural
production and includes detailed questions at the plot, household, and community levels.In ad-
dition to eliciting detailed reports of fertilizer usage, the 2018/19 round selected a sub-sample
of maize-producing households in Ethiopia’s major maize-growing regions. For each of these
households, usually one maize plot was selected for further analysis. The survey team visited
the plot at harvest time and conducted a crop cut to measure objectively the maize yield. This
produced a total sample of 506 fields, randomly selected at the level of the enumeration area
(EA).7 Maize samples from these crop-cuts were then genotyped to reveal the genetic identity
of the maize varieties, making the ESS4 the first nationally-representative household survey in
the public domain that incorporates DNA fingerprinting for varietal identification (Kosmowski
et al., 2020).

Although ESS4 includes DNA fingerprinting data for other crops, we restrict our focus
to maize for several reasons. Maize is now the most commonly grown crop by smallholder
farmers in Ethiopia, and maize area has seen a sharp increase over the past 20 years (Stevenson,
Macours, and Gollin, 2018). Furthermore, the crop also has the highest reported adoption rate of
improved seeds in Ethiopia (Mekonen et al., 2019). Evidence from observational studies (Abay
et al., 2018) is consistent with on-station experiments conducted by the national research system
in finding that improved maize varieties (especially, maize hybrids) are more input-responsive
than improved varieties of other crops.

Defining improved varieties in a genetic sense is not straightforward. We define a collected
sample to be “improved” if it matched 95% of selected genetic markers associated with the
originally-released breeder seeds in the reference library.8 This 95% purity threshold guarantees
seed uniformity and genetic proximity to the originally-released cultivar. However, we provide
robustness tests to show that our main results hold qualitatively for other thresholds in the 70%
to 97.5% range.9

We distinguish four different seed belief types, according to two binary variables. The
first indicates whether the farmer believes he sowed improved or traditional seeds based on
his self-report in the post-planting round of the survey. The second indicates whether the ge-

6For details about the sampling frame, see https://microdata.worldbank.org/index.php/catalog/3823/download/49208
(Accessed 9 August 2023).

7A lack of technical consistency between the different survey modules (with identifiers either missing or not
matching) and missing or unrecoverable values for individual observations reduces the final sample to 432 obser-
vations when merging across these dimensions and preprocessing the data.

8See appendix for a detailed discussion.
9The 70% threshold is a low match and tends to treat as “improved” some material that may not perform very

differently from unimproved material.
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Figure 1: Distribution of seed beliefs for improved maize varieties at the plot-level based on farmer
self-reports in survey and DNA fingerprinting results for different genetic purity thresholds for distin-
guishing improved from traditional seeds. Color indicates the farmer belief (orange = improved, blue =
traditional), and pattern denotes the DNA type (dots = improved, none = traditional). Numerical results
are reported in Table A1.

netic fingerprinting test for the post-harvest sample revealed that it is improved (“DNA Type”),
based on our chosen purity threshold. When the two variables align, the farmer has correct
seed beliefs. Farmers who correctly report sowing improved seeds have “True Positive” (TP)
beliefs, while farmers who correctly report sowing traditional seeds have “True Negative” (TN)
beliefs. When the two variables are not aligned, the farmer has false seed beliefs. Farmers who
incorrectly report sowing improved seeds have “False Positive” (FP) beliefs, while those who
incorrectly report sowing traditional seeds have “False Negative” (FN) beliefs. While farmers’
self-report does not change with the purity threshold discussed above, the DNA Type obviously
does, as do belief types do as well. In a mechanical sense, higher purity thresholds mean that
fewer samples are identified as “Positive” for genetic improvement, meaning that observations
tend to shift from TP to FP and from FN to TN. Figure 1 shows how the distribution of TP, FP,
TN, and FN beliefs change as the purity threshold increases from 70% to 97.5%.

We evaluate the effect of these seed beliefs on agricultural input allocation, with a specific
focus on the application of purchased nitrogen fertilizer. To account for the fact that different
types of fertilizer are substitutable and often used interchangeably depending on local availabil-
ity, we convert all chemical fertilizer applications into total nutrient equivalents for nitrogen and
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Figure 2: Cumulative distribution of purchased fertilizer measured in nitrogen equivalents by (a) DNA
type at a 95% purity threshold and (b) self-reported seed belief. Official nitrogen recommendations range
from 110-130kg/ha (higher for hybrid (improved) maize) (Abate et al., 2015)

phosphorus.10 Ideally, our measure would also include nutrients applied in the form of animal
manure – commonly used in our context. As is generally the case, however, we lack informa-
tion on quantities of manure that are applied and on its nutrient content. As a result, we simply
include a dummy variable to indicate whether farmers have applied any manure.

Figure 2 shows cumulative distributions of the nitrogen equivalents in kg per hectare. Panel
(b) of this figure shows clearly that farmer seed beliefs – combined with their apparent un-
derstanding of production complementarities between improved seeds and nitrogen, which are
embedded in official recommendations – drive nitrogen applications much more strongly than
the actual DNA type of the seed they sowed, shown in Panel (a). As a further disaggregation of
these nitrogen use distributions, Figure A2 shows the same figures by belief type (i.e., TP, TN,
FP, FN). As a benchmark, 75% of farmers who report sowing improved maize apply less than
the government recommendation of 130kg/ha for hybrid (improved) maize; over 90% of those
who believe they are growing traditional maize apply less than their slightly lower recommen-
dation. While it is unclear how seriously farmers (should) take this common recommendation

10Data from http://www.soilcropandmore.info/soil/fertiliz.htm (last accessed 9 August 2023) show the ni-
trogen and phosphorus contents for each respective fertilizer (for Nitrogen: Urea = 46% DAP = 18%
NPS = 10%; for Phosphorus: Urea = 0% DAP = 46% NPS = 42%) Although one high-profile study
found that actual nitrogen content may deviate from these expected levels (Bold et al., 2017), other stud-
ies suggest that similar results may be generated by errors in testing rather than true nutrient deficiencies
(see https://blogs.worldbank.org/impactevaluations/devil-details-measuring-agricultural-input-quality (Accessed
19 April 2023).
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given the pronounced heterogeneity in growing conditions, taking it at face value, costly under-
use is a more prevalent problem than costly over-use of nitrogen. For median farmer of the two
types in panel (b) of Figure 2, nitrogen use is less than half this recommendation (improved) and
zero (traditional). If the government recommendation were close to optimal in the context of
the simple model depicted in Figure A1, this means that false seed beliefs may actually ‘distort’
nitrogen use in a way that increases profits for many of the farmers in our sample.

We provide descriptive statistics for general respondent-level and agricultural production
variables by belief type in Table 1. In columns (5)-(10), we report differences in these variables
between specified pairs of these belief types. None of the demographic variables is system-
atically (statistically) different by belief type, but we do see a number of clear differences in
production-related characteristics. Farmers who reported sowing improved seeds, whether this
belief is true (TP) or false (FP), are more likely to have participated in extension programs,
purchased the seed they sowed, and to have larger total land holdings. TP and FP farmers also
apply nitrogen at much higher rates on average than those with TN and FN beliefs.

Farmers with TN beliefs rely more on manure as a source of fertilizer. Similar descriptive
statistics for a broader set of variables (see Table A2), indicate virtually no other systematic
differences in means between these belief types with one exception: more remote locations
seem to be less likely to sow true improved seeds.
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Table 1: Descriptive statistics by seed belief categories for demographic and production variables with pairwise differences

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

True
positive (TP)

False
positive (FP)

True
negative (TN)

False
negative (FN)

Belief =
improved

DNA =
Belief

DNA =
improved

DNA =
traditional

DNA 6=
Belief

Belief =
traditional

Means FP vs TP TN vs TP FN vs TP TN vs FP FN vs FP FN vs TN

General Respondent Variables

Gender (female = 1) 0.18 0.17 0.17 0.12 -0.005 -0.01 -0.06 -0.01 -0.05 -0.05
(0.39) (0.38) (0.38) (0.33) (0.06) (0.05) (0.06) (0.05) (0.07) (0.05)

Age (years) 43.50 47.59 47.62 46.59 4.13 4.16 3.13 0.03 -1.00 -1.03
(14.30) (15.40) (14.85) (15.53) (2.46) (1.88) (2.42) (2.14) (2.63) (2.10)

Education 0.35 0.41 0.37 0.44 0.06 0.03 0.09 -0.04 0.03 0.07
(attended any school = 1) (0.48) (0.50) (0.48) (0.50) (0.08) (0.06) (0.08) (0.07) (0.09) (0.07)

Agricultural Production Variables

Extension contact (yes = 1) 0.83 0.71 0.44 0.52 -0.12 -0.39*** -0.32*** -0.27*** -0.20* 0.07
(0.38) (0.46) (0.50) (0.50) (0.08) (0.06) (0.08) (0.07) (0.08) (0.07)

Seeds purchased (yes = 1) 0.93 0.76 0.17 0.21 -0.17** -0.76*** -0.72*** -0.59*** -0.55*** 0.04
(0.25) (0.43) (0.37) (0.41) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05)

Land area (ha) 0.16 0.14 0.09 0.11 -0.02 -0.08*** -0.06** -0.06** -0.04 0.02
(0.16) (0.16) (0.10) (0.17) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Nitrogen (kg/ha) 77.65 127.85 19.05 35.62 50.20*** -58.60*** -42.03** -108.79*** -92.23*** 16.57
(113.26) (145.57) (59.77) (74.07) (15.02) (11.50) (14.82) (13.07) (16.06) (12.84)

Manure (yes = 1) 0.29 0.37 0.48 0.33 0.07 0.18** 0.04 0.11 -0.03 -0.14
(0.46) (0.49) (0.50) (0.48) (0.08) (0.06) (0.08) (0.07) (0.09) (0.07)

Notes: Number of observations: 432. Plots have been classified into farmer belief types based on farmer self-report and DNA type evaluated at a 95% threshold
for genetic purity. Columns (1)–(4) present the mean values of the respective variables and columns (5)–(10) show the differences between these groups. Tukey
tests for equality of mean values. * p <0.10; ** p <0.05; *** p <0.01. Amounts of nitrogen are simple aggregates of the respective nitrogen contents of three
fertilizers: Urea = 46%, DAP = 18%, NPS = 10%.
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3 Empirical strategy

In this section, we first present the econometric specifications that we use to estimate the impact
of seed beliefs on input allocations. We discuss issues related to causal identification and related
concerns. We then present a prediction exercise that allows us to project the observed on-farm
effects onto data covering the entirety of Ethiopia to arrive at national-level estimates of seed
misclassification and fertilizer use.

3.1 Seed beliefs and on-farm input allocation

We are interested in estimating the effects of farmer seed beliefs on their on-farm investment
of other inputs. We focus our attention on nitrogen fertilizer application as the most important
and most common purchased input in this context. We estimate the same specification for other
purchased inputs and present results in the appendix.

In contrast to experimental approaches that artificially manipulate farmers’ seed beliefs
(e.g., Bulte et al., 2014, 2023), we rely on observational data. It is difficult to imagine any de-
fensible instruments that could be used to isolate plausibly exogenous variation in seed beliefs
(i.e., instruments that would satisfy the exclusion restriction). We therefore adopt a second-best
empirical strategy that relies on a progressively richer set of controls and post-double selection
(PDS) LASSO to account for potentially omitted variables (Belloni et al., 2014). This approach
is possible given the detailed set of variables collected by the ESS4. We discuss below the
plausibility of a causal interpretation of the results.

Our standard specification is as follows:

yi = a +bBelie fi + gDNAi +dBelie fi ⇥DNAi +x
0
i
z + ei, (1)

where yi is effective nitrogen use in kg per hectare for plot i, Belie fi and DNAi are indicator
variables corresponding respectively to the farmer’s belief that the seed is improved, and the
DNA test results for each plot. This specification nests estimates of all four belief types – TP,
FP, TN, and FN – in one model. Relative to the omitted category (TN), (b + d ) gives the
TP effect, b alone gives the FP effect, and g alone gives the FN effect. We include a vector
of control variables, xi, that we expand to include progressively broader sets of controls. We
estimate this specification by OLS and cluster standard errors at the EA level.

Identification of the primary effects of interest in this case requires that Belie fi and DNAi

are uncorrelated with e , conditional on xi. Given the richness of the ESS4 data, we estimate a
version of this specification in which additional controls in xi are chosen using PDS LASSO.
We leverage the high-dimensional nature of our dataset by offering a large number and variety
of candidate variables for the algorithm to chose from. Specifically, we include Belie fi, DNAi
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and Belie fi ⇥DNAi as either ‘treatment’ variable or as part of the amelioration set.11

The full set of potential controls in xi includes 288 variables from the post-planting, post-
harvest, household and community questionnaires, as well as a set of spatial variables at the
household and plot level; we also include all squared terms and pairwise interactions. We
estimate a regression that includes only the controls selected by PDS LASSO. Information on
the composition of the data set and selected variables is reported in Table A3.

3.2 Prediction and projection of national nitrogen application

We aim to extend our estimates to the national level, in order to estimate the magnitude of
overuse and underuse by farmers who misidentify their seeds. This exercise consists of three
stages: (1) we extrapolate the results from the subsample of maize-growing households whose
plots were sampled and tested to the wider ESS4 sample of maize-growing households; (2) we
scale these results to estimates of observed national-level nitrogen use by belief type; and (3) we
use our empirical model to estimate nitrogen use by FP and FN farmers under a counterfactual
of corrected beliefs.

3.2.1 Predicting DNA type beyond the sampled plots

In each ESS4 EA in the major maize-growing regions (Tigray, Amhara, Oromia, Harar, and
the so-called Southern Nations, Nationalities, and People’s Region), up to 10 maize plots were
randomly selected for DNA fingerprinting of crop cuts. We compare key farmer and field char-
acteristics of this DNA sample to the maize-growing plots in these regions for which DNA tests
are not available. While the regional composition differs significantly in its weights, this com-
parison (Table A10) shows balance along most key characteristics between the DNA sample
and the other maize plots. To infer the DNA type of seeds sown on plots not covered by the
DNA fingerprinting, we use a so-called SuperLearner machine learning approach to predict the
DNA type for fields in the broader ESS sample.

This approach allows us to train, validate, and optimally combine a group of candidate
algorithms to generate the best-performing weighted ensemble model for classifying whether
a plot is sown with improved or traditional seed.12 We use 20-fold cross-validation to select
the best-performing algorithm according to Area Under the Curve (AUC), Accuracy, Precision
and Recall criteria. We then apply the best-predicting model to all remaining plots in the major

11To be precise, we designate either Belie fi or DNAi to be the ‘treatment’ variable in the PDS LASSO. We
then impose the requirement that the amelioration set must include the other variable and the interaction term
Belie fi ⇥DNAi as well as the set of extended ’controls’. All other potential control variables are then included or
excluded based on the PDS LASSO estimation (Belloni, Chernozhukov, and Hansen, 2014).

12Our candidate models include RandomForest, glmnet, xgboost, and bagged trees.
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maize-growing regions.13 The results are plot-specific predicted probabilities that the chosen
variety is genetically improved.

3.2.2 Extrapolating nitrogen use to national-level

Next, we combine self-reported beliefs for farmers outside the DNA subsample with the pre-
dicted probabilities for the DNA type of seeds that they are growing.14 We sum these probabili-
ties, weighted by the ESS4 sampling weights, for each belief type and use this weighted sum to
obtain nationally-representative shares for each belief type. To account for differences in plot
size, we weight each probabilistic observation by their respective area and calculate population-
weighted shares of total maize area for each group. We then apply these shares to the estimated
total area in Ethiopia devoted to maize production in 2018/2019.15

3.2.3 Estimating counterfactual nitrogen use under ‘corrected’ beliefs

In the previous step, we estimate the average observed nitrogen use at the national level for
each of the four belief types. As an approximation exercise, we quantify the extent of over- and
under-application of nitrogen for FP and FN farmers by constructing a counterfactual of ‘cor-
rected’ beliefs. We first estimate a model of nitrogen application based on the full ESS4 sample
and predicted DNA probabilities. We then employ this model to predict nitrogen application
under an alternative of correct beliefs, as given by our estimated DNA probabilities. We then
follow the probabilistic approach laid out above to predict the “corrected” nitrogen use intensity
per group.

Combining area and nitrogen use intensity estimates for FP and FN farmers, we arrive at
group-wise nitrogen use under observed and corrected beliefs, which allows us to quantify the
extent of nitrogen overuse and underuse. We refer to these as inefficiencies, but we use this
term loosely as we do not know what the optimal level of nitrogen usage is for the plots in our
data.

13Relaxing this restriction and predicting for all maize farmers in ESS4 regardless of their region produces
nearly identical results at the national level.

14If a farmer reported the seeds sown on a given plot as ‘traditional’, then these probabilities are constructed as
Pr(T P) = Pr(FP) = 0, Pr(FN) = P(DNA = improved), and Pr(T N) = 1�Pr(DNA = improved). If a farmer
reported sowing ‘improved’ seeds, then these probabilities are: Pr(T N) = Pr(FN) = 0, Pr(FP) = 1�Pr(DNA =
improved), and Pr(T P) = Pr(DNA = improved).

15We take this estimate from the USDA estimate for the 2018/2019 season of 2,415,000 hectares.
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4 Results

4.1 Seed beliefs and on-farm input allocation

We report our main results for effective nitrogen application (kg/ha) in Table 2. We report very
similar results from the same sequence of estimations for effective phosphorus use in Table A7.
In columns (1)-(3), we progressively and manually expand the set of control variables included
in the specification, which we estimate using OLS. In columns (4) and (5), we use PDS LASSO
to select controls with “Belief” and “DNA” as treatment variables, respectively. Across these
five estimations, we see consistently large positive effects of farmer beliefs on nitrogen use,
including with PDS LASSO estimation (see Table 1 for average nitrogen use).16

The estimated coefficient on the “Belief ⇥ DNA” interaction is consistently large and neg-
ative, which somewhat surprisingly suggests that farmers with TP beliefs systematically apply
significantly less nitrogen than those with FP beliefs.17 Summing the first three estimates in
column (4), on average TP farmers apply about 54 kg/ha more than TN farmers. FP farmers,
by contrast, apply 49 kg/ha more than these TP farmers. This puzzling pattern could perhaps
reflect the fact that FP farmers are less likely to have purchased their seed than TP farmers
(Table 1). If farmers have a fixed budget for agricultural inputs – either literally or as a behav-
ioral regularity – then a reduction in seed expenditures would leave these farmers with more of
their agricultural input budget available for fertilizers. This explanation is consistent with sup-
plemental results for total expenditure on purchased inputs reported in Table A8, which show
insignificant coefficients on the “Belief ⇥ DNA” interaction – suggesting that while FP farmers
spend more on and apply more fertilizer than their TP peers, their overall expenditure on inputs
is comparable. An alternative explanation for this pattern is suggested by differences in non-
purchased seed: 17.5% of FP farmers use saved or recycled seed whereas only 3.4% of TP do.
Such farmers likely face more uncertainty about seed quality or genetic purity and may try to
offset a perceived deterioration with more nitrogen.

Since we adopt a second-best identification strategy out of necessity, some caution is merited
when interpreting these estimates as causal. However, the robustness of the estimates to the
inclusion of a full set of controls – including a set chosen agnostically with PDS LASSO – is
at least suggestive of a causal relationship between beliefs and fertilizer use. This imperfect
identification raises a third potential explanation for FP farmers applying more nitrogen than
TP farmers: it could be that false seed beliefs are endogenous with respect to fertilizer use.
Although many of the variables included as candidate and selected PDS LASSO controls (see
Table A3) are likely to be correlated with fertilizer use, we cannot rule out the presence of
endogeneity bias conclusively.

16Supplemental results indicate that these effects of beliefs on nitrogen use are driven by both extensive and
intensive margin adjustments.

17Note, however, that this estimated coefficient is no longer significant when estimating the extensive and inten-
sive margin adjustments separately.
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Table 2: Effective nitrogen use, seed beliefs and DNA type

Dependent variable: (1) (2) (3) (4) (5)

Nitrogen (kg/ha) OLS PDS LASSO

Belief 108.79*** 135.04*** 123.59*** 92.77*** 122.02***
(improved = 1) (29.18) (39.61) (36.89) (34.16) (35.79)
DNA 16.57 19.42* 18.87* 10.28 16.33

(improved = 1, 95% purity threshold) (10.97) (11.62) (10.25) (8.06) (10.23)
Belief ⇥ DNA (TP = 1) -66.77** -62.10** -50.59* -48.99* -51.30**

(32.42) (29.72) (26.43) (24.79) (25.37)
Extension contact (yes = 1) 2.60 1.50 -33.32** 3.16

(13.07) (12.96) (13.99) (12.15)
Seeds purchased (yes = 1) -35.82* -29.07 -51.21 -34.05*

(20.03) (18.52) (31.92) (18.05)
Field size (ha) -105.26*** -81.82*** -97.01*** -86.93***

(32.93) (29.36) (30.95) (29.99)
Manure use (yes = 1) -4.22 -9.89 3.89 3.42

(10.97) (10.84) (12.56) (14.54)

OLS: Main controls (3) no yes yes yes yes
OLS: Extended controls (12) no no yes yes yes
PDS LASSO: No. of candidate controls 288 288
PDS LASSO: No. of selected controls 6 5

Observations 432 432 432 432 432
Adjusted R

2 0.16 0.20 0.24 0.28 0.24

Notes: The DNA indicator is 1 if the DNA test indicated improved genetic material at a purity
threshold of 95%. Unreported ‘extended controls’ in model (3-5) include age, ‘has attended any
school’, farm type, mobile phone ownership, and household distance to nearest market, major road,
and population center. Amounts of nitrogen are simple aggregates of the respective nitrogen con-
tents of three fertilizers: Urea = 46%, DAP = 18%, NPS = 10%. Clustered standard errors robust to
heteroskedasticity across enumeration areas in parentheses. * p <0.10; ** p <0.05; *** p <0.01.
The set of variables selected in model 4 and 5 selected by the LASSO and used in the OLS post-
LASSO estimation and in the PDS structural estimation is augmented by an amelioration set en-
suring that belief, DNA, and their interaction, as well as the extended controls enter the identifying
model. Designated ’treatment’ variables in the PDS LASSO printed in bold. See Chernozhukov et
al. (2014) for details.
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A natural question that emerges from these results pertains to the production implications
of false belief-based input distortions. Do the patterns that we observe lead to a loss of output
or profitability? Given the substantial heterogeneity in maize production conditions in Ethiopia
(e.g., soils, agroecologies, etc.), it would be heroic to estimate a production function for this con-
text; and there is no single, uniform yield-maximizing (much less, profit-maximizing) amount
of fertilizer for farmers to apply. But this has not historically prevented the Ethiopian govern-
ment from providing and promoting uniform national fertilizer recommendations (Abate et al.,
2015). As mentioned earlier, if interpret these recommendations as profit maximizing levels of
N use and take them at face value, the vast majority of farmers in our sample under-use nitrogen.
False seed beliefs may therefore ‘distort’ N use in a way that increases rather than decreases
profits.18 Consequently, it is impossible to impose a general productivity interpretation on these
results. What we can state with greater confidence is that these results suggest that false seed
beliefs distort input allocations relative to farmer intent. Although we do not elicit fertilizer in-
tent directly, the substantial effect of farmer beliefs on fertilizer use suggests that farmers who
believed they sowed improved (traditional) seed intended to apply much more (less) fertilizer.

We can provide descriptive evidence of yield implications of these input distortions using
the crop-cut based production measures and GPS-based plot size measurements for the plots
in our subsample. Together, these gold-standard measures of area and output provide reliable
yield data, which we present as cumulative distributions in Figure A3. Yield tends to be higher
for true improved seeds – whether aligned with farmer beliefs or not – and for plots managed
by farmers who believe they sowed improved seeds – whether aligned with the genetic truth or
not.

4.2 Prediction and projection of nitrogen use at national-level

We employ a SuperLearner to predict DNA type for those maize plots in the major maize-
growing regions that are not covered in the DNA fingerprinting and use these predictions to
construct probabilistic estimates of our four belief types as described above. Panel A of Table 3
shows the results of this exercise. In this larger sample, 21% of farmers are predicted to be TP,
15% FP, 48% TN, and 16% FN. Calculations in Panel A also show that farmers with false beliefs
occupy around 32% of the land used for maize cultivation in Ethiopia. We consider multiple
approaches to predicting DNA type for farmers outside the DNA subsample (see Table A11).
The SuperLearner outperforms the individual candidate models and is reported in Panel C of
Table 3. We use this ensemble model to predict other variables in ESS4 to test this application.

For those sowing truly improved seeds, we see in Panel A that TP farmers use about 79
kg/ha of nitrogen on average compared to 29 kg/ha for FN farmers. The disparity for truly
traditional seeds is much more stark: 111 kg/ha for FP farmers compared to 25 kg/ha for TN

18To elaborate this point, Figure A2 suggests that while the median FP farmer applies the recommended amount
of N, the median TP farmer applies about half the recommended amount.
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Table 3: Predicting national-level rates of seed classification and nitrogen application.

Panel A: Population-weighted results by belief type True positive False positive True negative False negative

Shares of belief types 21% 15% 48% 16%
Shares of belief types, population-weighted 27% 15% 44% 14%
Shares of total maize area, population-weighted 41% 19% 27% 13%
Observed nitrogen use (kg/ha) 79.25 111.17 25.18 29.31
Predicted nitrogen use under correct beliefs (kg/ha) – 65.33 – 55.14
Inefficient overuse (kg/ha) – 45.84 – –
Inefficient underuse (kg/ha) – – – 25.83

Panel B: National-level estimates by belief type True positive False positive True negative False negative

National-level maize area (ha) 991,645 465,124 652,446 305,785
National-level nitrogen use under observed beliefs (t) 78,587 51,710 16,432 8,961
National-level nitrogen use under correct beliefs (t) – 30,387 – 16,861
Inefficient overuse (t) – 21,323 – –
Inefficient underuse (t) – – – 7,900

Panel C: Cross-validated model performance Accuracy AUC Precision Recall

Ensemble model (Super Learner) 0.82 0.84 0.73 0.71

Notes: 223 predictors are available to the model-generating algorithm, and we employ a 20-fold
cross validation to reduce overfitting. The total national-level maize area is calculated using the
percentages from Panel A and an external estimate of 2,42 million hectare used for maize cultivation
in Ethiopia (USDA, 2019). Further evaluation of the performance of the algorithms underlying the
prediction can be found in the appendix.

farmers. At the aggregate level, these gaps have the potential to produce quantitatively impor-
tant misallocation of agricultural inputs. An optimal allocation of fertilizer should see farmers
with the same seeds utilizing similar intensities of complementary agricultural inputs. Based
on this assumption, we can quantify national-level over- and under-allocation of fertilizer by
constructing a counterfactual scenario of ’corrected’ believes for the FP and FN groups (see
Appendix D) for more detail). We cannot definitively say that this represents a misallocation,
since we do not know with any confidence what is the optimal level of fertilizer use. However,
it is difficult to construct reasonable scenarios in which the discrepancy is efficient.

In Panel B, we report scaled estimates of nitrogen use at the national level by belief type.
Using the counterfactual of ‘corrected’ beliefs described above, we also report what we predict
total nitrogen use would have been with correct seed beliefs. FP farmers as a group overuse
nitrogen by this standard by over 21,323 mt. FN farmers as a group underuse nitrogen by much
less, 7,900 mt.

5 Conclusion

Our results show that significant differences in the allocation of nutrients arise depending on
whether farmers have correct or incorrect beliefs about the true genetic type of the seeds they
are growing. Because farmers appear to apply complementary inputs at levels reflecting their
beliefs about seed varieties, their misidentification of the genetic type of the seeds they are
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growing has implications for input use. To the extent that different genetic types do, in fact,
give rise to different optimal levels of input use, our results provide suggestive evidence for
misallocation of agricultural inputs.

Our findings confirm earlier studies by Bulte et al. (2014) and Wineman et al. (2020) which
highlight the importance of beliefs regarding the quality of agricultural technology on the al-
location of complementary inputs – and subsequently, on agricultural productivity. More gen-
erally, the paper reinforces the concerns raised by Bold et al. (2017), showing the potentially
negative effects of seed quality uncertainty. The potential harm that we identify is not solely
from the direct cost – that farmers may have paid a price premium for seeds that are genetically
low-quality – but more significantly from the indirect costs associated with inefficient input
use. We also note the dynamic concerns mentioned above: farmer seed misidentification will
presumably affect profitability. This may, in turn, undermine farmers’ willingness to use new
technologies more broadly. Farmers may be less willing in the future to purchase seeds and
fertilizer. Furthermore, they may harbor unwarranted doubts about the technology packages
recommended by agricultural extension services and agri-dealers.

The paper highlights the need for policy makers to closely monitor the seed quality present
in the market. This is especially relevant in the context of Ethiopia’s nation-wide introduction of
direct seed marketing and the broader liberalization of its seed system. Our findings emphasize
the need to ensure seed quality even if the government no longer controls the complete seed
supply. Furthermore, interventions helping farmers to better identify the seed they are using
and to ascertain the purity and quality of seeds could also be beneficial.

Our findings emphasize the importance of a deeper debate about the diffusion of newly
developed seed varieties and the driving forces of farmer misinformation in this context. This
paper serves as a starting point for further research efforts in this direction and demonstrates the
need for more extensive data collection. Misinformation on planted seed types is widespread
in rural Ethiopia. Combined with other emerging evidence, these findings raise the concern
that such misinformation may be a prevalent problem elsewhere in sub-Saharan Africa. As this
paper shows that farmers’ beliefs play a crucial role towards the allocation of key agricultural
inputs, understanding success and failure of seed identification presents a central issue to for
improving agricultural productivity.

Finally, our study adds to the growing body of evidence suggesting the need for caution
in using farmer self-reports of “improved” and “traditional” varieties in micro analyses. DNA
evidence is increasingly pointing to the problems of relying on self-reporting, and estimates of
returns to research (for example) may be biased if they are based on the self-reports. Nor can
we conclude that the self-reported data would necessarily give rise to classical measurement
error: there are systematic patterns of misidentification, suggesting the need for more complex
adjustments. We note also that the costs and other barriers to DNA fingerprinting analysis have
been greatly reduced in recent years, so that it is no longer implausible for studies to make some
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use of DNA-based checks on farmer seed identification (Kosmowski et al., 2019). Future work
on varietal adoption and use should benefit greatly from these new measurement techniques.
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6 Appendix: Conceptual Framework

To illustrate the indirect costs associated with seed misclassification that emerge from input
complementarities, consider the following stylized example. For simplicity, assume there are
two varieties of maize: improved and traditional. The improved variety produces higher yield
on average. While yield for both varieties increases when fertilizer is applied (at least up to
a point), the improved variety is generally more responsive to fertilizer, such that the profit-
maximizing level of input application is higher for the improved than the traditional variety.

For simplicity, assume farmers are risk-neutral, maximize profit, and are not liquidity con-
strained. Each farmer has a single maize plot and first chooses between sowing the improved
or traditional variety on this plot. Farmers subsequently optimize applied inputs, which we
partition into fertilizer x and a vector of all other inputs z, to maximize expected profits based
on known input costs, output price p and a production function f (x,z) that maps inputs into
expected maize production and is known by the farmer. We assume that inputs x and z are
available and of known quality (i.e., only seeds are subject to misclassification or incomplete
information).

We denote seed beliefs according to whether farmers believe the seed they sowed is im-
proved or traditional and therefore use the belief terms {Positive, Negative} to refer to the
believed presence or absence of improved germplasm. Comparing these beliefs to the DNA test
results enables us to distinguish whether these beliefs are {True, False}, thus providing four
seed belief categories: True Positive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN).

If farmers only had true seed beliefs, there would be no misclassification, and the profit
maximizing level of fertilizer x

⇤ (assuming optimal application of other inputs, z
⇤) for the im-

proved (TP) and traditional (TN) variety satisfies the following marginal value product (MVP)
conditions:

MV PT P =
∂ fP(x⇤T P

| z
⇤
P
)

∂x
p = px

MV PT N =
∂ fN(x⇤T N

| z
⇤
N
)

∂x
p = px

where p is the output price of maize, px is the fertilizer price, fP is the production function
for the improved variety (i.e., DNA test is ‘Positive’), and fN is the production function for the
traditional variety (i.e., DNA test is ‘Negative’).

The possibility of false seed beliefs complicates this optimization problem because the im-
proved and traditional maize variety respond differently to applied inputs, including fertilizer,
such that over a relevant fertilizer range ∂ fP

∂x
> ∂ fN

∂x
> 0 and x

⇤
P
> x

⇤
N

. Assume further that applied

inputs have stronger complementarities for the improved variety such that ∂ 2
fP

∂x∂ zi

> ∂ 2
fN

∂x∂ zi

> 0 for
at least some inputs i in z. Thus, the discrepancy between the actual and the perceived MVP of x
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emerges from both a mistaken perception of the fertilizer responsiveness of the seed germplasm
and the sub-optimal application of other inputs z. Specifically, after the farmer locks in his
allocation of other inputs based on his seed beliefs, the MVP in the case of false beliefs is given
by the FP and FN cases:

MV PFP =
∂ fN(x | z

⇤
P
)

∂x
p

MV PFN =
∂ fP(x | z

⇤
N
)

∂x
p

We graphically depict the input distortions associated with seed misclassification in this con-
ceptual model in Figure A1. Optimal input allocations (x⇤ and z

⇤) defined above for true beliefs
TP and TN provide benchmarks in this depiction. To unpack the input distortions introduced
by false beliefs, consider two potential degrees of misclassification. First, resolved misclassifi-

cation occurs when a farmer optimizes z
⇤ based on false beliefs, but subsequently chooses x

⇤

based on correct germplasm beliefs (i.e., after learning the true identity of the seed he sowed)
and taking z

⇤ as given. While this scenario may not be realistic in practice, it provides a use-
ful mid-point between no and full misclassification and helps to elucidate potential sources of
input distortions. Resolved misclassification generates optimal fertilizer levels of x

⇤
FP

and x
⇤
FN

conditional on prior sub-optimal application of other inputs:

MV PFP =
∂ fN(x⇤FP

| z
⇤
P
)

∂x
p = px

MV PFN =
∂ fP(x⇤T N

| z
⇤
N
)

∂x
p = px

As shown graphically, the fact that x
⇤
T P

> x
⇤
FN

even though the seeds in these cases are all
improved emerges from the incorrect beliefs of the farmer who consequently under-applies
other inputs z

⇤, which lowers the MVP of x as a result of input complementarities. The reverse is
true for the traditional seeds: x

⇤
T N

< x
⇤
FP

because the farmer over-invests in z
⇤ and inadvertently

raises the MVP of x.
Second, full (unresolved) misclassification occurs when the farmer’s false seed beliefs per-

sist throughout the entire production season, which distorts all input applications. Without the
information required to choose optimal fertilizer levels, he instead chooses sub-optimal appli-
cations x̃FP = x

⇤
T P

and x̃FN = x
⇤
T N

.
Two distinct indirect misclassification costs are apparent in Figure A1. In the FN case,

the farmer mistakenly believes he is growing the traditional variety and under-applies fertilizer.
As shown by area A, at this sub-optimal level of fertilizer investment the farmer misses an
opportunity to earn higher profits as even a small increase in fertilizer would increase the value
of maize production net of the fertilizer cost. In the FP case, the farmer applies fertilizer beyond
its optimal level and thereby reduces his profit by area B. The losses due to false seed beliefs as
represented stylistically by areas A and B are generally not symmetric since they depend on the
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differential marginal productivity of fertilizer below and above the optimum for traditional and
improved seeds. Moreover, these losses also reflect interactions with other inputs, which may
be further characterized by important non-linearities, including some that differ by variety.

Figure A1: Stylized depiction of optimal fertilizer (x) given price px and marginal value product
of fertilizer (MVP) for improved seeds (TP, FN) and traditional seeds (FP, TN) for true and
false beliefs. Area A represents unrealized profit due to lower than optimal fertilizer application
based FN seed beliefs. Area B represents lost profit due to applying fertilizer beyond its optimal
level based on FP seed beliefs.

7 Appendix: Survey and Data Details

Our analysis requires a genetic definition of “improved” varieties that we can compare with
farmer reports. In this paper, we consider two kinds of improved varieties: hybrids and im-
proved OPVs. We contrast these two distinct types of improved varieties with varieties that we
consider to be traditional. Varieties that are “traditional” from the perspective of modern breed-
ing programs may nevertheless be the result of significant on-farm selection over many gener-
ations of farmers. As with many breeders and in recognition of these informal but intentional
genetic selection processes, we refer to this alternative to improved varieties as “traditional”
rather than “unimproved.” (In the literature, the term “local” is used interchangeably with “tra-
ditional.”) Since maize is not indigenous to Ethiopia, the traditional varieties are themselves
very likely to bear some traces of germplasm that was viewed as ”improved” at some point in
the past. In more commercial settings, farmers typically purchase fresh seed every year; modern
seed producers follow a set of well-understood practices to maintain the genetic purity of their
varieties. However, these practices are not generally feasible for smallholders in Africa.

Given the potential for genetic drift in improved maize seeds, we need to define a purity
threshold at which we would judge a sample from a farmer’s plot to be improved. The geno-
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typing analysis matched the collected material against a reference library of improved varieties,
including both OPVs and hybrids. For each of the materials in the reference library, and for
each collected sample of maize seed, the DNA fingerprinting process examines the genetic se-
quences present at around 50,000 marker locations on the genome. The metric that we rely on is
how closely the collected sample matches the most closely related material from the reference
library. The precise selection of these markers works as follows: When the sample is close
enough to material from the reference library, the data identifies the specific hybrid or OPV
that the sample resembles, along with the proportion of the 50,000 markers that are matched.
Some samples matched closely to the reference varieties, while others showed more variation,
reflecting either the dilution of relatively pure seed during the seed multiplication process or the
genetic drift associated with saved (i.e., recycled) seed.

8 Appendix: Technical Details for Prediction Exercise

8.1 Features included in the prediction exercise

In order to predict the DNA status in the broader ESS4 sample, we select a number of candidate
variables that we feed into machine learning algorithms. These include 223 variables from the
post-planting, community and household questionnaire. The selected variables broadly cover
the following set of features:

• Agriculture and farming management practices

• Allocation of agricultural inputs (seed quantity, fertilizer quantity, pesticides etc.)

• Demographic household information

• Distance/remoteness variables (to population center, markets etc.)

• Community-specific variables (accessibility, infrastructure etc.)

• Plot characteristics: location, distance from household etc.

• Seed characteristics: seed source, recycle status etc.

• Soil and climate specific data based on GPS an GIS measurements

8.2 Algorithms used in the prediction exercise

We use the SuperLearner algorithm to identify the subset of the above described features that are
the best joint predictors of the DNA variable. This prediction routine is an ensemble method that
employs cross-validation to determine the optimally weighted combination of predictions from
a group of candidate models. The approach supports the use of machine learning algorithms in
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addition to standard parametric algorithms. Model outputs are the combined predictions of these
candidate models (Van der Laan, Polley, and Hubbard, 2007). For a detailed exposition of the
SuperLearner approach, see https://cran.r-project.org/web/packages/SuperLearner/vignettes/Guide-
to-SuperLearner.html.

We include candidate algorithms in our SuperLearner that perform particularly well on
classification tasks such as Random Forest, XGBoost, glmnet and a bagged tree algorithm. The
Random Forest and bagged classification tree models seek to optimize prediction performance
by averaging a collection of de-correlated decision trees (also known as bagging) (Breiman,
2001). The XGBoost (Extreme Gradient Boosting) algorithm employs gradient tree boosting
which sequentially connects a number of decision trees whereby each tree aims at minimizing
the residual error of the previous tree (Chen and Guestrin, 2016). Glmnet combines a gen-
eralised linear model with a configurable regularization parameter (elastic net or LASSO) to
maximize predictive performance (Friedman, Hastie, and Tibshirani, 2010).

When specifying our model, we follow the procedure outlined in Phillips et al. (2022). For
each of the models, we use stratified cross-validation to ensure that the model will general-
ize beyond the sample it is trained on. Specifically, we use 20-fold cross validation to select
model parameters that minimize the area under the curve (AUC) on the held-out validation data
across the folds 19. Across all of our candidate models, we use Random Forest as the screener
algorithm to perform feature selection before model training.

We use a number of different metrics to evaluate the performance of both the SuperLearner

model and the algorithms included in the ensemble. Accuracy corresponds to the percentage of
correct predictions in the validation data (correct predictions/all predictions). The Area Under
the Curve (AUC) represents the overall performance of the classifier in terms of its ability to
distinguish between positive and negative classes. Precision evaluates the proportion of true
positive predictions among all positive predictions (True Positives/(True Positives + False Pos-
itives)). Recall measures the proportion of true positive predictions among all true positive
instances in the data (True Positives/(True Positives + False Negatives).

8.3 Performance of prediction algorithms

Panel A of Table A11 shows the performance of the SuperLearner and a number of candidate
models that are aggregated in the ensemble. The ensemble model outperforms the candidate
models when considering all four criteria (AUC: 0.84 , Accuracy: 0.82 , Precision: 0.73, Recall:
0.71). Among the candidate models XGBoost has the highest accuracy (0.82), precision (0.71)
and recall (0.73), while Random Forest has the highest AUC (0.87).

19Cross-validation is a commonly-used method for validating machine learning models. By dividing the data
into folds and training and testing the model on these different subsets of the data, cross-validation helps to prevent
overfitting and provides a more accurate estimate of model performance. It is particularly useful when working
with small datasets or when the performance of the model needs to be estimated accurately.
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Table A1: Distribution of seed beliefs at the plot-level

Farmer self-report Traditional Improved

64.81 35.19

DNA purity 70% 80% 85% 90% 92.5% 95% 97.5%

Traditional 16.20 16.67 19.44 25.00 39.35 64.12 78.01
Improved 83.80 83.33 80.56 75.00 60.65 35.88 21.99

True Positive (TP) 27.78 27.78 27.55 26.16 24.31 20.60 15.51
False Positive (FP) 7.41 7.41 7.64 9.03 10.88 14.58 19.68
True Negative (TN) 8.80 9.26 11.81 15.97 28.47 49.54 58.33
False Negative (FN) 56.02 55.56 53.01 48.84 36.34 15.28 6.48

Correctly identified 36.57 37.04 39.35 42.13 52.78 70.14 73.84
Misidentified 63.43 62.96 60.65 57.87 47.22 29.84 26.16

Notes: Values reflect column-wise shares of the respective groups of the full
sample of 432 observations

Panel B of Table A11 demonstrates the ability of the SuperLearner to predict variables that
are measured for all observations in the broader ESS4 sample (extension program participation
and seed source). Here, we train and validate the SuperLearner on the DNA sub-sample, then
apply it to the wider ESS survey. This allows us to evaluate the general suitability of the Super-

Learner approach to predict binary outcomes in the ESS survey. We can see that the in-sample
and out-of-sample performance of the ensemble method is high across all assessed variables
(Accuracy and AUC being consistently above 80%). The results show that the SuperLearner

is able to reliably predict binary variables in the ESS4, making a machine learning approach a
viable option for overcoming the scaling constraints of the DNA subsample.

8.4 Predicting fertilizer for the scaling exercise

To predict fertilizer application for FP and FN farmers under correct beliefs, we re-estimate our
PDS LASSO specification based on the wider ESS4 sample, following the model structure as
presented in Table 2, Column 4. This sample includes the previously predicted DNA types for
the extended set of plots. We employ the estimated model to predict fertilizer application for FP
and FN farmers given correct beliefs, i.e., beliefs fully aligned with the measured and predicted
DNA type, respectively.

9 Appendix: Supplemental Figures and Tables
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Figure A2: Cumulative distribution of applied nitrogen equivalents for pairwise comparisons of
maize seed belief types at a 95% purity threshold. In panels (a) and (b), farmer beliefs differ
but their seeds are the same (i.e., traditional and improved, respectively). In panels (c) and (d),
farmer beliefs are the same (i.e., traditional and improved, respectively) but the genetic identity
of their seeds differ.
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Figure A3: Cumulative distribution of maize yield for pairwise comparisons of maize seed
belief types at a 95% purity threshold. In panels (a) and (b), farmer beliefs differ but their seeds
are the same (i.e., traditional and improved, respectively). In panels (c) and (d), farmer beliefs
are the same (i.e., traditional and improved, respectively) but the genetic identity of their seeds
differ.
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Table A2: Descriptive statistics by seed belief categories for additional outcome variables with pairwise differences and tests

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

True
positive (TP)

False
positive (FP)

True
negative (TN)

False
negative (FN)

Belief =
improved

DNA =
Belief

DNA =
improved

DNA =
traditional

DNA 6=
Belief

Belief =
traditional

Means FP vs TP TN vs TP FN vs TP TN vs FP FN vs FP FN vs TN

Additional Variables

Phosphorus (kg/ha) 52.77 77.24 12.65 24.25 24.47* -40.11*** -28.52** -64.58*** -52.98*** 11.60
(61.66) (96.79) (42.97) (51.90) (9.69) (7.43) (9.56) (8.44) (10.37) (8.29)

Total cost of purchased inputs (ETB/ha) 5519.53 5428.24 924.38 1639.57 -91.29 -4595.15*** -3879.96*** -4503.86*** -3788.67*** 715.19
(6267.13) (5242.57) (2341.67) (3336.19) (668.58) (512.17) (662.53) (582.05) (717.91) (575.09)

NPS (kg/ha) 84.36 150.45 7.78 19.85 66.09*** -76.59*** -64.52*** -142.68*** -130.61*** 12.07
(134.92) (231.83) (34.52) (50.09) (18.41) (14.10) (18.16) (16.03) (19.69) (15.74)

DAP (kg/ha) 37.68 30.53 20.41 34.60 -7.15 -17.28 -3.09 -10.12 -4.07 14.19
(93.09) (89.39) (89.58) (109.13) (15.39) (11.79) (15.19) (13.40) (16.47) (13.16)

UREA (kg/ha) 135.72 221.73 31.74 59.58 97.56*** -103.97*** -76.13** -201.53*** -173.69*** 27.84
(221.73) (273.68) (102.81) (124.38) (27.83) (21.32) (27.46) (24.23) (29.77) (23.80)

Cost of purchased NPS (ETB/ha) 1045.61 1371.98 117.17 128.92 326.37 -928.45*** -916.69*** -1254.81*** -1243.05*** 11.76
(1775.63) (1936.83) (592.63) (471.34) (194.83) (149.25) (192.22) (169.61) (208.42) (166.61)

Cost of purchased DAP (ETB/ha) 468.63 384.16 213.00 566.76 -84.47 -255.63 98.14 -171.16 182.60 353.77
(1140.58) (1142.65) (1046.96) (1752.31) (199.52) (152.84) (196.85) (173.70) (213.44) (170.62)

Cost of purchased UREA (ETB/ha) 1587.43 1734.65 351.46 742.57 147.22 -1235.97 -844.86 -1383.19 -992.081 391.11
(2973.96) (1655.94) (1205.26) (1724.82) (303.17) (232.25) (299.11) (263.93) (324.33) (259.26)

Cost of maize seeds purchased (ETB/ha) 2336.47 1937.45 227.95 179.19 -399.02 -2108.51*** -2157.28*** -1709.50*** -1758.26*** -48.77
(3551.00) (3592.83) (1014.73) (493.07) (369.01) (282.69) (365.67) (321.25) (396.24) (317.41)

Total household labor (hours/ha) 1350.24 1546.81 2116.35 1462.33 196.57 766.11 112.09 569.54 -84.47 -654.02
(1490.07) (1601.14) (5491.14) (1910.61) (667.14) (511.07) (661.10) (580.79) (716.37) (573.85)

Total hired labor (hours/ha) 36.67 54.74 48.07 52.82 18.07 11.40 16.15 -6.67 1.92 4.75
(88.34) (150.95) (151.35) (155.13) (23.26) (17.82) (22.95) (20.25) (24.88) (19.89)

Access to credit services 0.15 0.29 0.11 0.11 0.14 -0.04 -0.04 -0.18 -0.18 -0.0014
(0.36) (0.46) (0.31) (0.31) (0.06) (0.04) (0.06) (0.05) (0.06) (0.05)

Mobile phone ownership 0.30 0.35 0.29 0.41 0.05 -0.02 0.11 -0.06 0.06 0.12
(0.46) (0.48) (0.45) (0.50) (0.08) (0.06) (0.08) (0.07) (0.08) (0.07)

HH distance to nearest market (in KMs) 56.95 43.09 64.55 60.26 -13.87 7.60 3.31 21.46*** 17.17* -4.29
(29.04) (36.44) (44.45) (50.70) (6.87) (5.26) (6.77) (5.98) (7.35) (5.87)

HH distance to nearest road (in KMs) 17.22 12.37 17.01 17.59 -4.85 -0.21 0.38 4.64 5.23 0.58
(16.80) (13.44) (17.07) (20.66) (2.82) (2.16) (2.79) (2.46) (3.02) (2.41)

HH distance to nearest population center 25.54 21.07 29.77 23.63 -4.47 4.23 -1.90 8.70** 2.56 -6.13
(in KMs) (15.47) (13.72) (23.40) (20.43) (3.34) (2.56) (3.30) (2.91) (3.58) (2.86)

Notes: Number of observations: 432. Plots have been classified into farmer belief types based on farmer self-report and DNA type
evaluated at a 95% threshold for genetic purity. Columns 1 – 4 present the mean values of the respective variables and columns 5 – 10
show the differences between these groups. Tukey tests for equality of mean values. Amounts of phosphorus are simple aggregates of
the respective phosphorus contents of two fertilizers: DAP = 46%, NPS = 42%. Cost outcomes are calculated as the sum of spending for
maize seeds, Urea, DAP, NPS and all other inorganic fertilizer purchased.
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Table A3: High-dimensional controls as candidate variables for main PDS-LASSO specification

Variable Description

LASSO-selected covariates in model (4)

s4q13b When did you plant the seeds for the [Crop] on [FIELD]? (Year)
s4q14 What type of crop sowing techniques was used for [CROP] on [FIELD]?
s3q16 Is [FIELD] under Extension Program during the current agricultural season?
s5q16 Was any of the [SEED] that you used left over from a previous season?
s7q22 Total NPS fertilizer ready for use for main season in 2011 E.C
cs4q26 How many private secondary schools are there in this community?

Amelioration set in model (4)

DNA type indicator is 1 if the DNA test indicated improved genetic material at a purity threshold of 95%
Belief x DNA Farmer self-report interacted with DNA type
s7q04 Do you participate in the extension program?
s7q06 Do you get credit services?
s5q02 Did you purchase any of the [SEED] used?
s2q04 Has [NAME] ever attended any school?
s11b ind 01 Do you own any mobile phones, exclusively or jointly with someone else?
s3q08 Record area of the field using GPS
s1q03a How old is [NAME]? (COMPLETED YEARS)
dist road HH Distance in (KMs) to Nearest Major Road
dist market HH Distance in (KMs) to Nearest Market
dist popcenter HH Distance in (KMs) to Nearest Population Center with +20,000
s1q02 What is the sex of [NAME]?
s3q25 Do you use any manure on [FIELD] in this agricultural season?

Candidate variables for PDS-LASSO models

saq01 Region code
saq15 What is the holder’s farm type?
s7q01 Do you exercise crop rotation on your land holding?
s7q02 Did you use chemical fertilizers on any one of your crop field?
s7q09 Do you not get advisory services?
s7q11 1 Who are your major suppliers of fertilizer? Supplier 1
s7q15 What type of Plough equipment do you mostly use?
s7q16 What type of machine do you mostly use to thresh the crop products?
s7q17 Do you plough any additional field other than the fields you had in the last
s7q29 Have you participated in watershed activities in your community?
s4q02 Was the area planted with [CROP] on [FIELD] pure stand or mixed?
s4q04 Was prevention measure taken to prevent damage of [CROP] on [FIELD]?
s4q08 Was [CROP] damaged on [FIELD]?
s4q13a When did you plant the seeds for the [Crop] on [FIELD]? (Month)
s4q13b When did you plant the seeds for the [Crop] on [FIELD]? (Year)
s4q14 What type of crop sowing techniques was used for [CROP] on [FIELD]?
s4q22 Do you intend to sell any of [CROP] to be harvested from [FIELD]?
s3q03b During this season, what is the status of this [FIELD]?
s3q04 What was the method of cropping in this field?
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Table A3 continued from previous page

Variable Description

s3q12 ENUMERATOR: What is the appearance of this field?
individual id Who in HH makes primary decisions on [FIELD]?
s3q14 Are there other household members that the primary decision maker consults
s3q16 Is [FIELD] under Extension Program during the current agricultural season?
s3q17 Is [FIELD] irrigated during the current agricultural season?
s3q24 Do you use any other chemical fertilizers (other than UREA,DAP and NPS)?
s3q26 Do you use any compost on [FIELD] in this agricultural season?
s3q27 Do you use any other organic fertilizer on [FIELD]?
s3q34 During the last three years, have you planted a legume on this [FIELD]?
s3q37 What was the previous state of [FIELD] in the previous agricultural season?
s3q38 Is [Field] prevented from Erosion?
s3q40 Do you use any method for soil fertility on [FIELD]?
s2q03 Does your household have a document for this [PARCEL]?
s2q05 How did your household acquire [PARCEL]?
s2q16 What is the predominant soil type of [PARCEL]?
s5q12 Did you receive any of the [SEED] for free?
s5q16 Was any of the [SEED] that you used left over from a previous season?
s1q01 What is the relationship of [NAME] to the head of household?
s1q08 What is [NAME]’S main religion?
s1q09 What is [NAME]’s marital status?
s1q12 In what region were you born?
s1q13 Does [NAME]’s biological father live in this household?
s1q17 Does [NAME]’s biological mother live in this household?
s1q16 Highest educational level completed by [NAME]’s biological father
s1q20 Highest educational level completed by [NAME]’s biological mother
s1q21 What was the industry of occupation of [NAME]’s biological father?
s1q22 What was the industry of occupation of [NAME]’s biological mother?
s2q01 ENUMERATOR: Is this person answering for himself / herself?
s2q04 Has [NAME] ever attended any school?
s2q19 Does [NAME] plan to attend school next year?
s4q01 Is [NAME] asnwering for himself / herself?
s4q33b Has [NAME] worked for payment in the last 12 months?
s4q45 In the past 12 months has [NAME] been employed as temporary labour by PSNP?
s4q48 Does [NAME] do any other casual/temporary labour work in past 12 months?
s4q51 Did [NAME] work for other households for free in the last 12 months?
s4q53 Did [NAME] participate in free labour contribution in the last 12 months?
cs2aq01 Do the children in this community typically wear neat clothing?
cs2aq02 Do the children under 10 in this community typically wear shoes?
cs2aq03 Do the adults in this community typically wear neat clothing?
cs2aq05 Are the house surroundings in this community swept clean?
cs2aq06 What material is most commonly used for the outside walls of the houses?
cs2aq07 What material is most commonly used for the roofs of the houses?
cs2aq09 Is there a publicly accessible notice board in this community?
cs2aq11 Is there a suggestion box in this community?
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Table A3 continued from previous page

Variable Description

cs3q01 More people moved into this community or more people moved away?
cs3q04a What are the religions practiced by residents of this community? (1ST)
cs3q07 What is the most common use of land in this community?
cs3q08 Is the land of the community .. .?
cs3q11a Is there gullies on agricultural land in this community?
cs3q12a 1 What are the common types of marriages witnessed in this community? (1ST)
cs4q01 What is the type of main access road surface in this community?
cs4q03 Do vehicles pass on the main road in this community throughout the year?
cs4q04 0 Main road passable by public transport: Not passable the whole year
cs4q04 1 Main road passable by public transport: SEPTEMBER
cs4q04 2 Main road passable by public transport: OCTOBER
cs4q04 3 Main road passable by public transport: NOVEMBER
cs4q04 4 Main road passable by public transport: DECEMBER
cs4q04 5 Main road passable by public transport: JANUARY
cs4q04 6 Main road passable by public transport: FEBRUARY
cs4q04 7 Main road passable by public transport: MARCH
cs4q04 8 Main road passable by public transport: APRIL
cs4q04 9 Main road passable by public transport: MAY
cs4q04 10 Main road passable by public transport: JUNE
cs4q04 11 Main road passable by public transport: JULY
cs4q04 12 Main road passable by public transport: AUGUST
cs4q04 13 Main road passable by public transport: Passable the whole year
cs4q05 0 Main road passable by a lorry: Not passable the whole year
cs4q05 1 Main road passable by a lorry: SEPTEMBER
cs4q05 2 Main road passable by a lorry: OCTOBER
cs4q05 3 Main road passable by a lorry: NOVEMBER
cs4q05 4 Main road passable by a lorry: DECEMBER
cs4q05 5 Main road passable by a lorry: JANUARY
cs4q05 6 Main road passable by a lorry: FEBRUARY
cs4q05 7 Main road passable by a lorry: MARCH
cs4q05 8 Main road passable by a lorry: APRIL
cs4q05 9 Main road passable by a lorry: MAY
cs4q05 10 Main road passable by a lorry: JUNE
cs4q05 11 Main road passable by a lorry: JULY
cs4q05 12 Main road passable by a lorry: AUGUST
cs4q05 13 Main road passable by a lorry: Passable the whole year
cs4q11 Is the community in a major urban centre (regional or zonal capital)?
cs4q14 Is there a large weekly market in this community?
cs4q19 Are all of the classrooms built of brick/stone with iron sheet roofs?
cs4q20 Is the nearest government primary school electrified?
cs4q22 Is the nearest government secondary school electrified?
cs4q27 Is there a place in this community to purchase common medicines?
cs4q29 Is there a health post in this community?
cs4q31 Nurse, midwife or trained health extension agents permanently working
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Table A3 continued from previous page

Variable Description

cs4q32 Who runs this health post?
cs4q33 Is this health post electrified?
cs4q34 Is there a hospital/health center/clinic in this community?
cs4q38 Who runs the facility where the nearest medical doctor is located?
cs4q39 Are there any groups or programs in this community providing insecticide?
cs4q41 Any groups providing support and care to people who are chronically ill
cs4q43 Is there a commercial bank in this community?
cs4q47 Is there water service in the community?
cs4q50 Is there an ATM in this community?
cs4q52 Is there a SACCO in this community?
cs4q54 Is there a Bank Agent in this community?
cs4q56 Is there an Insurance Branch in this community?
cs4q58 Has the PSNP program been operational during the past 12 months?
cs5q01 1 Most important sources of employment for individuals in the community (MOST)
cs5q02 Do people leave temporarily to look for work elsewhere?
cs5q06 Do people come to this community to look for work?
cs5q09 Is there a cooperative to create opportunities for work?
cs6q01 Do any households farm crops or keep livestock in this community?
ssa aez09 Agro-ecological Zones
sq1 Nutrient availability
sq2 Nutrient retention capacity
sq3 Rooting conditions
sq4 Oxygen availability to roots
sq5 Excess salts
sq6 Toxicity
sq7 Workability (constraining field management)
s7q12 How many of your own oxen were used in this Meher season?
s7q14 How many oxen do you have?
s7q19 Total Chemical Fertilizers purchased for main season in 2011 E.C
s7q20 Total Dap fertilizer ready for use for main season in 2011 E.C
s7q21 Total Urea fertilizer ready for use for main season in 2011 E.C
s7q22 Total NPS fertilizer ready for use for main season in 2011 E.C
s7q23 Total other chemical fertilizer ready for use for main season in 2011 E.C
s7q32a 1 During this agriculture season, how much quantity of pesticide was used?
s7q32b 1 During this agriculture season, how much quantity of herbicide was used?
s7q32c 1 During this agriculture season, how much quantity of fungicide was used?
parcel id Unique Parcel Identifier
field id Unique Field Identifier
crop id Unique Crop Identifier
s4q11a What was the quantity of Seed / Seedling used for [CROP] on [FIELD]?
s4q21a How much of [CROP] do you expect to harvest from [FIELD]?: Quantity
s4q21b How much of [CROP] do you expect to harvest from [FIELD]?: Unit
s3q28 For the current season, how many HH members worked on [FIELD]?
s3q30a Hired Men (Number of Men)
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Table A3 continued from previous page

Variable Description

s3q30d Hired Women (Number of Women)
s3q30g Hired Children (Number of Children)
s3q31a Other HH Labour (Number of Men)
s3q31c Other HH Labour (Number of Women)
saq12 Household Size
saq16 What is the holder’s education Level
s1q03a How old is [NAME]? (COMPLETED YEARS)
s1q06 For how many weeks during the last 12 months was [NAME] away?
s4q03a Total time [NAME] spent fetching water for use by HH yesterday (HOURS)
s4q03b Total time [NAME] spent fetching water for use by HH yesterday (MINUTES)
s4q04a Total time [NAME] spent collecting firewood for use by HH yesterday (HOURS)
s4q04b Total time [NAME] spent collecting firewood for use by HH yesterday (MINUTES)
cs3q02 What is the population of this community?
cs3q03 How many households are found in this community?
cs3q04b Approximately how many households practice?
cs3q06 What percentage of households within this community are polygamous?
cs3q09 Percentage of the land in this community in bush
cs3q10 Percentage of the agricultural land in this community in large scale farms
cs3q11 Percentage of the land in this community in forest, and not used for agri.
cs3q12b 1 What percentage of HH are united through this type of marriage?
cs4q02 How far is it to the nearest tar/asphalt road?
cs4q06 How far is it to the nearest bus station?
cs4q07a Expected frequency for a bus to stop at the nearest bus station (NUMBER)
cs4q16 How many churches (congregations) are there in this community?
cs4q17 How many mosques are there in this community?
cs4q18 Distance to the nearest government primary school serving this community
cs4q21 Distance to the nearest government secondary school serving this community
cs4q23 Number of primary schools run by religious organizations in this community
cs4q24 Number of secondary schools run by religious organizations in this community
cs4q25 How many private primary schools are there in this community?
dist border HH Distance in (KMs) to Nearest Border Crossing
dist admhq HH Distance in (KMs) to Capital of Region of Residence
twi Potential Wetness Index
af bio 1 Annual Mean Temperature (degC * 10)
af bio 8 Mean Temperature of Wettest Quarter (degC * 10)
af bio 12 Annual Precipitation (mm)
af bio 13 Precipitation of Wettest Month (mm)
af bio 16 Precipitation of Wettest Quarter
slopepct Slope (percent)
srtm1k Elevation (m)
popdensity 2018 Population density per km2
cropshare 2018 Percent cropland in local area
h2018 tot 12-month total rainfall (mm) in 2018
h2018 wetQstart Start of wettest quarter in dekads 1-36, where first dekad of 2018 =1
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Table A3 continued from previous page

Variable Description

h2018 wetQ Total rainfall in wettest quarter in 2018
h2019 tot 12-month total rainfall (mm) in 2019
h2019 wetQstart Start of wettest quarter in dekads 1-36, where first dekad of 2019 =1
h2019 wetQ Total rainfall in wettest quarter in 2019
anntot avg Avg annual total rainfall (mm)
wetQ avgstart Avg start of wettest quarter in dekads 1-36, where first dekad of year =1
wetQ avg Avg total rainfall in wettest quarter (mm)
h2018 ndvi avg Average NDVI value in primary growing season (highest quarter) in 2018
h2018 ndvi max Maximum dekadal NDVI value in primary growing season (highest quarter) in 2018
h2019 ndvi avg Average NDVI value in primary growing season (highest quarter) in 2019
h2019 ndvi max Maximum dekadal NDVI value in primary growing season (highest quarter) in 2019
ndvi avg Long-term average NDVI value in primary growing season (highest quarter)
ndvi max Long-term maximum dekadal NDVI value in primary growing season (highest quarter)
plot twi Plot Potential Wetness Index
plot srtm Plot Elevation (m)
plot srtmslp Plot Slope (percent)

Notes: Selected variables and further candidate variables for PDS LASSO model, Table 2 (4).
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Table A4: Regression results for nitrogen (kg/ha) across different purity thresholds

Purity threshold OLS PDS-LASSO

in % Belief DNA Belief x DNA Belief DNA Belief x DNA

0.70 55.62* -46.59** 53.27 53.58 -31.65 36.38
(31.94) (20.42) (36.06) (35.93) (19.73) (33.30)

0.80 57.22* -44.67** 51.48 55.57 -29.34 34.15
(31.40) (19.45) (35.68) (35.23) (18.78) (32.93)

0.85 63.93** -35.41** 47.40 62.64** -19.42 28.42
(27.45) (15.43) (34.20) (31.34) (14.81) (31.37)

0.90 68.20*** -28.64** 45.13 67.94** -12.65 21.08
(23.30) (13.16) (33.20) (27.52) (12.21) (29.34)

0.925 128.12*** -3.49 -39.99 111.85*** -2.67 -43.22
(44.65) (7.37) (33.67) (45.97) (7.05) (30.16)

0.95 123.59*** 18.87* -50.59* 92.77*** 10.28 -48.99**
(36.89) (10.25) (26.43) (34.16) (8.06) (24.79)

0.975 113.47*** 24.90** -48.07** 85.53*** 11.82 –35.28
(32.49) (12.36) (23.75) (30.12) (10.36) (22.21)

Notes: The DNA indicator is 1 if the DNA test indicated improved genetic material at the respective
purity threshold. Unreported ‘extended controls’ include ‘extension contact’, ‘seeds purchased’,
field size, manure use, age, ‘has attended any school’, farm type, mobile phone ownership, and
household distance to nearest market, major road, and population center. Amounts of nitrogen are
simple aggregates of the respective nitrogen contents of three fertilizers: Urea = 46%, DAP = 18%,
NPS = 10%. Clustered standard errors robust to heteroskedasticity across enumeration areas in
parentheses. * p <0.10; ** p <0.05; *** p <0.01. The set of variables selected by the LASSO and
used in the OLS post-LASSO estimation and in the PDS structural estimation is augmented by an
amelioration set ensuring that belief, DNA, and their interaction, as well as the extended controls
enter the identifying model. See Chernozhukov et al. (2014) for details.

38



Table A5: Effective nitrogen use, seed beliefs and DNA type (intensive margin)

Dependent variable: (1) (2) (3) (4) (5)

Nitrogen use (kg per ha) OLS PDS LASSO

Belief 64.74* 117.88*** 106.81*** 93.58*** 111.81***
(improved = 1) (33.31) (41.94) (34.43) (31.53) (39.06)
DNA 16.29 20.00 18.14 0.46 8.74

(improved = 1, threshold at 95%) (20.02) (18.86) (16.98) (17.26) (14.35)
Belief ⇥ DNA (TP = 1) -66.56* -50.53* -32.68 -32.35 -43.48*

(37.52) (30.03) (24.79) (24.08) (25.48)
Extension contact (yes = 1) -36.12* -14.92 -19.65 -28.90

(20.71) (21.05) (19.20) (18.82)
Seeds purchased (yes = 1) -75.75** -65.98** -82.44* -70.46**

(32.83) (25.42) (44.38) (26.47)
Field size (ha) -196.90*** -155.09** -160.41** -169.99***

(61.49) (61.19) (66.77) (62.97)
Manure use (yes = 1) 8.61 -3.54 11.09 16.12

(20.01) (18.26) (20.58) (23.99)

OLS: Main controls (3) no yes yes yes yes
OLS: Extended controls (12) no no yes yes yes
PDS LASSO: No. of candidate controls 278 278
PDS LASSO: No. of selected controls 20 15

Observations 217 217 217 217 217
Adjusted R

2 0.04 0.18 0.23 0.22 0.21

Notes: The DNA indicator is 1 if the DNA test indicated improved genetic material at a purity
threshold of 95%. Unreported ‘extended controls’ in model (3-5) include age, ‘has attended any
school’, farm type, mobile phone ownership, and household distance to nearest market, major road,
and population center. Amounts of nitrogen are simple aggregates of the respective nitrogen con-
tents of three fertilizers: Urea = 46%, DAP = 18%, NPS = 10%. Clustered standard errors robust to
heteroskedasticity across enumeration areas in parentheses. * p <0.10; ** p <0.05; *** p <0.01.
The set of variables selected in model 4 and 5 selected by the lasso and used in the OLS post-lasso
estimation and in the PDS structural estimation is augmented by an amelioration set ensuring that
belief, DNA, and their interaction, as well as the extended controls enter the identifying model. See
Chernozhukov et al. (2014) for details.
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Table A6: Effective nitrogen use, seed beliefs and DNA type (extensive margin)

Dependent variable: (1) (2) (3) (4) (5)

Nitrogen use (>0 kg) OLS PDS LASSO

Belief 0.66*** 0.57*** 0.53*** 0.24*** 0.29***
(improved = 1) (0.06) (0.07) (0.08) (0.08) (0.08)
DNA 0.14 0.10 0.09 0.07 0.05

(improved = 1, threshold at 95%) 0.07 (0.06) (0.06) (0.04) (0.04)
Belief x DNA (TP = 1) -0.18 -0.18** -0.14* -0.12 -0.12*

(0.09) (0.09) (0.08) (0.07) (0.07)
Extension contact (yes = 1) 0.27*** 0.27*** -0.07 -0.08

(0.06) (0.06) (0.06) (0.06)
Seeds purchased (yes = 1) 0.01 0.04 -0.05 0.03

(0.06) (0.07) (0.06) (0.05)
Field size (ha) -0.10 -0.01 -0.20 -0.16

(0.15) (0.16) (0.13) (0.13)
Manure use (yes = 1) -0.15*** -0.15*** -0.13** -0.11**

(0.05) (0.05) (0.05) (0.05)

OLS: Main controls (3) no yes yes yes yes
OLS: Extended controls (12) no no yes yes yes
PDS LASSO: No. of candidate controls 288 288
PDS LASSO: No. of selected controls 22 21

Observations 432 432 432 432 432
Adjusted Rˆ2 0.34 0.43 0.46 0.60 0.58

Notes: The DNA indicator is 1 if the DNA test indicated improved genetic material at a purity
threshold of 95%. Unreported ‘extended controls’ in model (3-5) include age, ‘has attended any
school’, farm type, mobile phone ownership, and household distance to nearest market, major road,
and population center. Amounts of nitrogen are simple aggregates of the respective nitrogen con-
tents of three fertilizers: Urea = 46%, DAP = 18%, NPS = 10%. Clustered standard errors robust to
heteroskedasticity across enumeration areas in parentheses. * p <0.10; ** p <0.05; *** p <0.01.
The set of variables selected in model 4 and 5 selected by the lasso and used in the OLS post-lasso
estimation and in the PDS structural estimation is augmented by an amelioration set ensuring that
belief, DNA, and their interaction, as well as the extended controls enter the identifying model. See
Chernozhukov et al. (2014) for details.
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Table A7: Effective phosphorus use, seed beliefs and DNA type

Dependent variable: (1) (2) (3) (4) (5)

Phosphorus (kg/ha) OLS PDS LASSO

Belief 64.58*** 69.82** 64.48** 50.65** 52.26**
(improved = 1) (19.12) (28.13) (25.92) (23.89) (22.21)
DNA 11.60 11.20 8.35 10.04** 3.96

(improved = 1, threshold at 95%) (7.41) (7.40) (6.60) (5.03) (5.94)
Belief ⇥ DNA (TP = 1) -36.07* -34.90* -29.28* -27.25* -25.60

(20.74) (19.33) (17.08) (15.95) (15.72)
Extension contact (yes = 1) 15.27** 11.70 -5.19 -10.33

(7.42) (7.88) (7.59) (9.72)
Seeds purchased (yes = 1) -11.04 -11.61 -18.46 -8.83

(14.48) (13.48) (22.66) (12.55)
Field size (ha) -61.59*** -61.59*** -57.96*** -59.31***

(18.82) (18.72) (19.32) (19.68)
Manure use (yes = 1) -7.02 -6.96 -1.51 3.46

(7.31) (6.83) (8.51) (10.99)

OLS: Main controls no yes yes yes yes
OLS: Extended controls no no yes yes yes
PDS LASSO: No. of candidate controls 288 288
PDS LASSO: No. of selected controls 11 12

Observations 432 432 432 432 432
Adjusted R

2 0.14 0.18 0.22 0.26 0.26

Notes: The DNA indicator is 1 if the DNA test indicated improved genetic material at a purity
threshold of 95%. Unreported ‘extended controls’ in model (3)-(5) include age, ‘has attended any
school’, farm type, mobile phone ownership, and household distance to nearest market, major road,
and population center. Amounts of phosphorus are simple aggregates of the respective phosphorus
contents of two fertilizers: DAP = 46%, NPS = 42%. Clustered standard errors robust to het-
eroskedasticity across enumeration areas in parentheses. * p <0.10; ** p <0.05; *** p <0.01.
The set of variables selected in model (4) and (5) selected by the LASSO and used in the OLS
post-LASSO estimation and in the PDS structural estimation is augmented by an amelioration set
ensuring that belief, DNA, and their interaction, as well as the extended controls enter the identify-
ing model. See Chernozhukov et al. (2014) for details.
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Table A8: Total cost of purchased inputs, seed beliefs and DNA type

Dependent variable: (1) (2) (3) (4) (5)

Total cost of purchased inputs (ETB/ha) OLS PDS LASSO

Belief 4503.86*** 4626.12*** 4117.12*** 2288.48** 2431.98**
(improved = 1) (998.75) (1161.10) (969.10) (1010.63) (1023.01)
DNA 715.19 727.60 706.49 302.699 367.46

(improved = 1, threshold at 95%) (501.51) (520.56) (460.38) (399.50) (413.96)
Belief ⇥ DNA (TP = 1) -623.90 -628.52 -395.66 -236.52 -192.31

(1219.29) (1256.22) (1096.56) (1014.72) (1044.30)
Extension contact (yes = 1) 569.67 724.41 447.83 530.77

(593.83) (508.39) (494.68) (486.55)
Field size (ha) -5571.96*** -5358.58*** -6797.20*** -6097.14***

(1609.93) (1417.35) (1637.49) (1661.03)
Manure use (yes = 1) -442.54 -532.06 -255.01 -413.34

(524.12) (513.69) (518.58) (567.54)

OLS: Main controls no yes yes yes yes
OLS: Extended controls no no yes yes yes
PDS LASSO: No. of candidate controls 287 287
PDS LASSO: No. of selected controls 13 7

Observations 431 431 431 431 431
Adjusted R

2 0.21 0.24 0.30 0.32 0.31

Notes: The total cost of purchased inputs in ETP per hectare is defined as the aggregate value per
hectare of all of the maize seed, NPS, UREA, DAP, and all other inorganic fertilizer purchased.
The DNA indicator is 1 if the DNA test indicated improved genetic material at a purity threshold
of 95%. Unreported ‘extended controls’ in model (3)-(5) include age, ‘has attended any school’,
farm type, mobile phone ownership, and household distance to nearest market, major road, and
population center. Clustered standard errors robust to heteroskedasticity across enumeration areas
in parentheses. * p <0.10; ** p <0.05; *** p <0.01. The set of variables selected in model (4) and
(5) selected by the LASSO and used in the OLS post-LASSO estimation and in the PDS structural
estimation is augmented by an amelioration set ensuring that belief, DNA, and their interaction,
as well as the extended controls enter the identifying model. See Chernozhukov et al. (2014) for
details.
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Table A9: Effective Urea use, seed beliefs and DNA type

Dependent variable: (1) (2) (3) (4) (5)

Urea (kg/ha) OLS PDS LASSO

Belief 201.53*** 257.24*** 236.00*** 176.04*** 230.81***
(improved = 1) (54.72) (73.42) (68.57) (63.82) (63.83)
DNA 27.84 34.61* 36.83* 16.68* 36.21*

(improved = 1, threshold at 95%) (18.73) (20.51) (18.97) (16.05) (19.58)
Belief ⇥ DNA (TP = 1) -125.40** -115.59** -94.36* -92.85* -104.09**

(60.17) (54.92) (49.08) (47.89) (48.77)
Extension contact (yes = 1) -7.27 -7.12 -71.76*** -1.73

(24.56) (23.76) (27.46) (22.33)
Seeds purchased (yes = 1) -73.17* -58.32* -105.77* -64.91**

(37.81) (35.10) (59.57) (31.72)
Field size (ha) -184.19*** -132.04** -171.27*** -140.13***

(61.70) (53.27) (57.27) (51.76)
Manure use (yes = 1) -4.10 -17.17 10.79 7.33

(20.57) (20.20) (23.37) (27.35)

OLS: Main controls no yes yes yes yes
OLS: Extended controls no no yes yes yes
PDS LASSO: No. of candidate controls 288 288
PDS LASSO: No. of selected controls 7 6

Observations 432 432 432 432 432
Adjusted R

2 0.16 0.20 0.25 0.29 0.25

Notes: The DNA indicator is 1 if the DNA test indicated improved genetic material at a purity
threshold of 95%. Unreported ‘extended controls’ in model (3)-(5) include age, ‘has attended any
school’, farm type, mobile phone ownership, and household distance to nearest market, major road,
and population center. Clustered standard errors robust to heteroskedasticity across enumeration
areas in parentheses. * p <0.10; ** p <0.05; *** p <0.01. The set of variables selected in model
(4) and (5) selected by the LASSO and used in the OLS post-LASSO estimation and in the PDS
structural estimation is augmented by an amelioration set ensuring that belief, DNA, and their in-
teraction, as well as the extended controls enter the identifying model. See Chernozhukov et al.
(2014) for details.

43



Table A10: Comparing DNA fingerprinting and non-fingerprinting subsamples from the ESS4
along key characteristics for main maize-growing regions

(1) (2) (3)

DNA subsample ESS4 non-DNA (1) - (2)

Selected variables (Table 1)

Gender (female = 1) 0.16 0.17 -0.01
(0.37) (0.38) (0.02)

Age (years) 46.61 44.79 1.82**
(14.98) (14.41) (0.86)

Education (attended any school = 1) 0.39 0.35 0.04
(0.49) (0.48) (0.03)

Extension contact (yes = 1) 0.58 0.53 0.05*
(0.49) (0.50) (0.03)

Seeds purchased (yes = 1)ˆ 0.42 0.45 -0.03
(0.49) (0.50) (0.03)

Land area (ha) 0.11 0.12 -0.01
(0.14) (0.20) (0.01)

Nitrogen (kg/ha) 49.64 60.68 -11.04
(99.14) (319.66) (15.76)

Manure use (%, yes = 1) 0.40 0.42 -0.01
(0.49) (0.49) (0.03)

PDS LASSO selected variables

Type of crop sowing technique 0.56 0.50 0.06**
(raw (broadcast) planting = 0 (1)) (0.50) (0.50) (0.03)
Seed used left over from a previous season 0.51 0.47 0.03
(yes = 1) (0.50) (0.50) (0.03)
Total NPS fertilizer ready for use 28.95 44.30 -15.34***
for main season in 2011 (51.43) (89.56) (4.65)
Number of private schools in community 0.01 0.001 0.01***

(0.12) (0.03) (0.004)
Plot under extension program 0.42 0.35 0.07**
in current season ( yes = 1) (0.49) (0.48) (0.03)

Regional percentage shares

Tigray 0.19 0.11 0.07***
Amhara 0.29 0.35 -0.07**
Oromia 0.19 0.25 -0.06***
SNNP 0.22 0.20 0.02
Harar 0.12 0.09 0.03*

Observations 431 877

Notes: Interaction terms selected by PDS LASSO excluded.
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Table A11: Performance of SuperLearner and candidate models

Panel A: Cross-validated in-sample performance Accuracy AUC Precision Recall

Ensemble model (SuperLearner) 0.82 0.84 0.73 0.71
XGBoost 0.82 0.84 0.71 0.73
Random Forest 0.80 0.87 0.72 0.63
GLM Net 0.75 0.76 0.64 0.56
Bagged Classification Trees 0.81 0.84 0.74 0.63

Panel B: Performance of ensemble models for alternative outcomes Accuracy AUC Precision Recall

Extension program participation (yes = 1), DNA subsample 0.83 0.92 0.77 0.82
Extension program participation (yes = 1), ESS 4 0.88 0.87 0.81 0.85
Seed source (purchased = 1), DNA subsample 0.90 0.95 0.92 0.84
Seed source (purchased = 1), ESS4 0.92 0.92 0.93 0.90

Notes: Panel A displays performance metrics for the underlying prediction model and candidate
algorithms. Panel B illustrates the out-of-sample performance of ensemble models for other agri-
cultural outcomes for which the actual outcomes are observed for the complete ESS4. In-sample
performance for these models are reported next to out-of-sample results to evaluate the ability to
predict agricultural outcomes accurately, and to test the extend to which these models are overfitted
to the subsample on which the cross-validated training has been done.
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