

CBAM TRAINING

CASE STUDY – Nitrogen Fertilizers

EGYPT

December 6, 2023

EUROPEAN BANK FOR RECONSTRUCTION AND DEVELOPMENT (EBRD)

European Bank for Reconstruction and Development

- 1. Characteristics of the Fertilizer Industry in Egypt
 - 2. Goods in scope of CBAM
 - 3. Determination of embedded emissions in the Fertilizer Industry

4. Decarbonization options and their impacts

5. Free Allowance Phase Out

6. Impact of CBAM in the Fertilizer Industry and concluding remarks

2 © Ricardo plc November 2023

CBAM

FERTILIZER

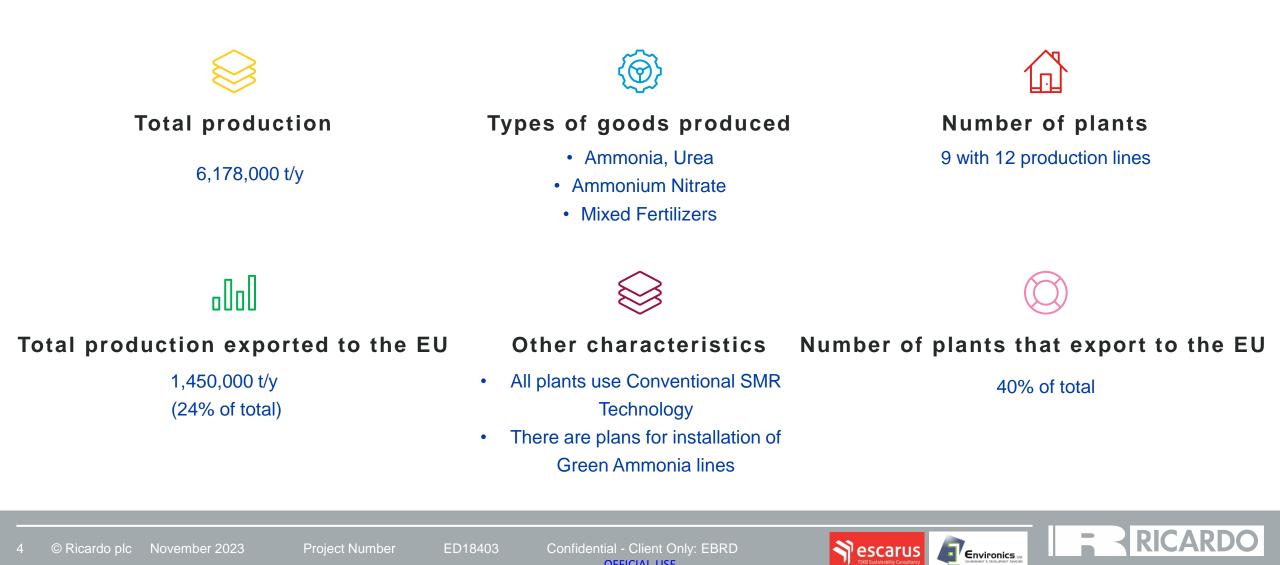
INDUSTRY

Project Number

ED18403

CHARACTERISTICS OF THE FERTILIZER INDUSTRY IN EGYPT

3 © Ricardo plc November 2023


Project Number

ED18403 Confidentia

CHARACTERISTICS OF THE FERTILISERS INDUSTRY



OFFICIAL USE

CHARACTERISTICS OF THE FERTILIZER INDUSTRY IN EGYPT

PRODUCTION PROCESS IN A TYPICAL PLANT IN EGYPT

- All Egyptian N-Fertilizer Plants use the Haber-Bosch conventional Steam Methane Reforming (SMR) technology.
- Lines lifetime > 50 years
- The process generates steam from exothermic reactions and from the NG-fueled reformer furnace and auxiliary boiler.
- Steam is used to provide thermal energy, generate electricity and as a driver for motors, turbines and compressors as it much cheaper than electricity.
- Some of the newer plants operate within the Best Available Techniques Benchmarks.
- CO₂ process emissions vary from 1.24 (EU BAT) 1.4 tCO₂/t NH3.

Project Number

ED18403

CARBON FOOTPRINT OF A TYPICAL FERTILIZER PLANT IN EGYPT

Production line components	Product	Scope 1	Scope 2	Scope 3	Embedded Emissions	Percent	
			Ammonia				
Ammonia / Urea	Ammonia	1.57	0.0411	0	1.62	100%	
	Urea	0.163	0.018	0.923	1.1	57%	
Ammonia / Nitric Acid/ Ammonium Nitrate	Ammonia	2.48	0.0411	0	2.52	100%	
	Nitric Acid	0.19	0.0024	0.7	0.89	28%	
	Ammonium Nitrate	0	0	1.11	1.11	42%	

3 Project Number

Confidential - Client Only OFFICIAL USE

ED18403

RICARDO

GOODS IN SCOPE OF CBAM FOR THE FERTILIZERS SECTOR

7 © Ricardo plc November 2023

Project Number

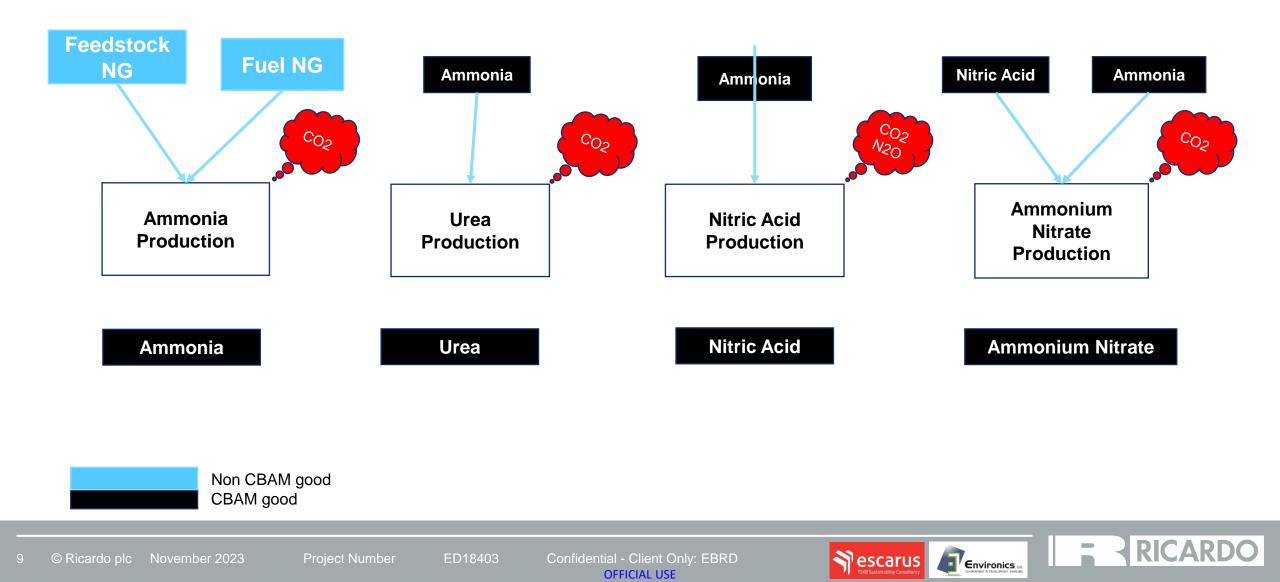
ED18403 Confidential - Client Or OFFICIAL USE Rescarus

GOODS IN SCOPE OF CBAM – FERTILIZERS SECTOR

Complex good Produced from other CBAM goods (either simple or complex goods)

Aggregated Goods Category	Product CN Code	Description	
Nitric Acid	2808 00 00	Nitric acid, Sulpho-nitric acid	
Urea	3102 10	Urea	
Ammonia	2814	Ammonia	
Mixed Fertilizers	2834 21 00	Nitrates of Potassium	
	3102	Mineral or Chemical fertilizers, Nitrogenous (except Urea)	
	3105	Mineral or Chemical fertilizers containing N, P, K and other fertilizers except those containing P and K.	

8 © Ricardo plc November 2023


Project Number

ED18403

SIMPLE/ COMPLEX GOODS IN FERTILIZERS SECTOR

DETERMINATION OF EMBEDDED EMISSIONS IN THE FERTILIZER SECTOR

10 © Ricardo plc November 2023

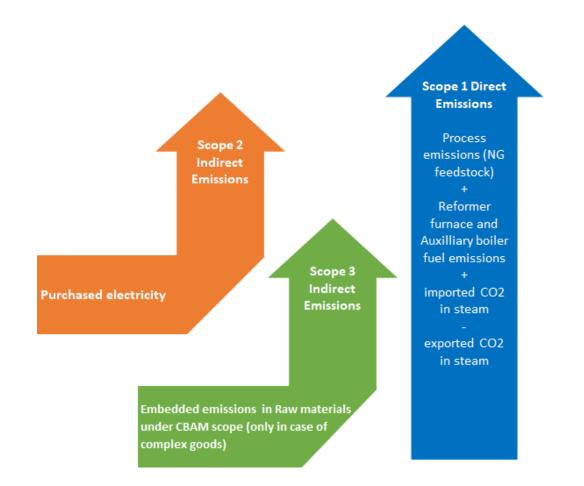
Project Number

ED18403 Confidential - Client Or OFFICIAL USE

OVERVIEW OF EMBEDDED EMISSIONS IN FERTILIZER

Scope 1 Direct emissions =

Process emissions (CO2 from Feedstock) + fuel emissions + imported CO2 in (steam and waste gases) – exported CO2 in (steam and waste gases)


Scope 2 Indirect emissions =

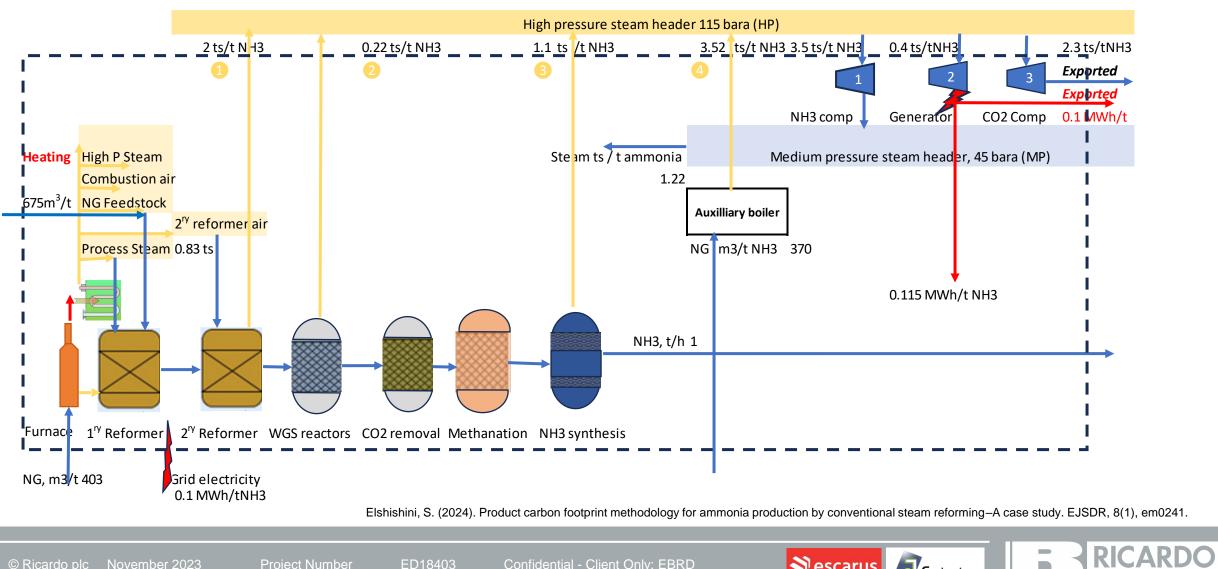
Purchased electricity

Scope 3 emissions upstream =

Embedded CO2 in raw material under CBAM scope (only in case of complex goods)

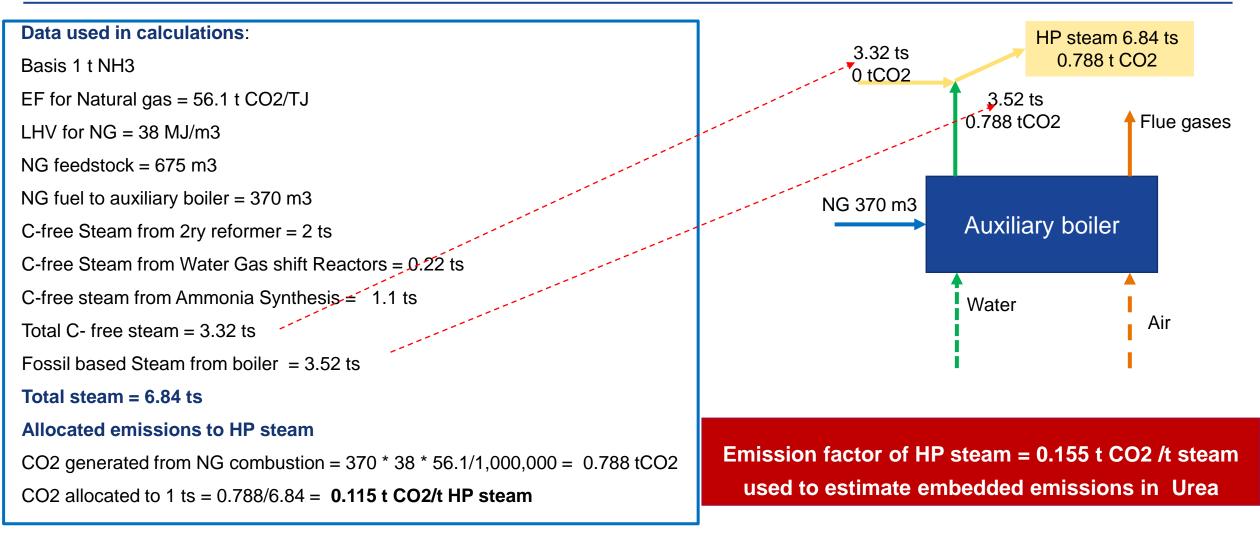
Total embedded emissions = **Scope 1 + 2 + 3**

11 © Ricardo plc November 2023


Project Number

ED18403

Setting the boundary for estimating Embedded Emissions in Ammonia (A/U plant)


© Ricardo plc November 2023

Project Number

ED18403

CO2 ALLOCATION TO HP STEAM

13 © Ricardo plc November 2023

Project Number

ED18403

Confidential - Client Only: EBRD OFFICIAL USE

RICARDO

DATA USED FOR CALCULATING EMBEDDED EMISSIONS IN AMMONIA / UREA PLANTS

Additional Data used in calculations

```
EF (emission factor) for Egyptian grid electricity = 0.411 tCO2e /MWh
```

NG (Natural Gas) feedstock = 675 m3/t NH3

NG fuel to reformer = 403 m3/t NH3 product

NG fuel to auxiliary boiler = 370 m3/t NH3

Grid electricity consumption = 0.1 MWh/ t NH3

Consumption of steam from HP header = 1.22 t

Consumption of steam for self-generated electricity = 0.21 t

Assumptions

- No embedded emissions in NG under CBAM scope
- Thermal energy generated from reformer is consumed within the boundary of ammonia line
- Part of self-generated electricity is exported to the Urea plant equivalent to = 0.19 t
- Medium pressure steam exported to Urea equivalent to HP steam = 2.3 t
- Process CO2 exported to Urea plant = 1.24 tCO2

ED18403 Confidential - Client Only: EBRD OFFICIAL USE

14 © Ricardo plc November 2023

CALCULATING EMBEDDED EMISSIONS IN AMMONIA

Scope 1 emissions

- Embedded Process emissions = Natural gas feedstock * LHV * Emission factor for NG = 675 * 38 * 56.1 / 1,000,000 = 1.44 tCO2
- CO2 generated from primary reformer fuel = Amount of fuel * LHV * Emission factor = 403 * 38 * 56.1 /1,000,000 = 0.86 tCO2
- CO2 generated auxiliary boiler fuel = 370 * 38 * 56.1 / 1,000,000 = 0.788 t CO2
- CO2 exported to Urea = -1.24 tCO2
- Steam exported to Urea = tons of steam exported to Urea * Emission factor for steam = 2.3 * 0.115 = -0.264 tCO2
- Steam used for self-generated electricity exported to Urea = amount of steam * EF of steam (slide 13) = 0.19 * 0.115 = 0.022 tCO2

Total scope 1 emissions = 1.57 tCO2

Scope 2 emissions

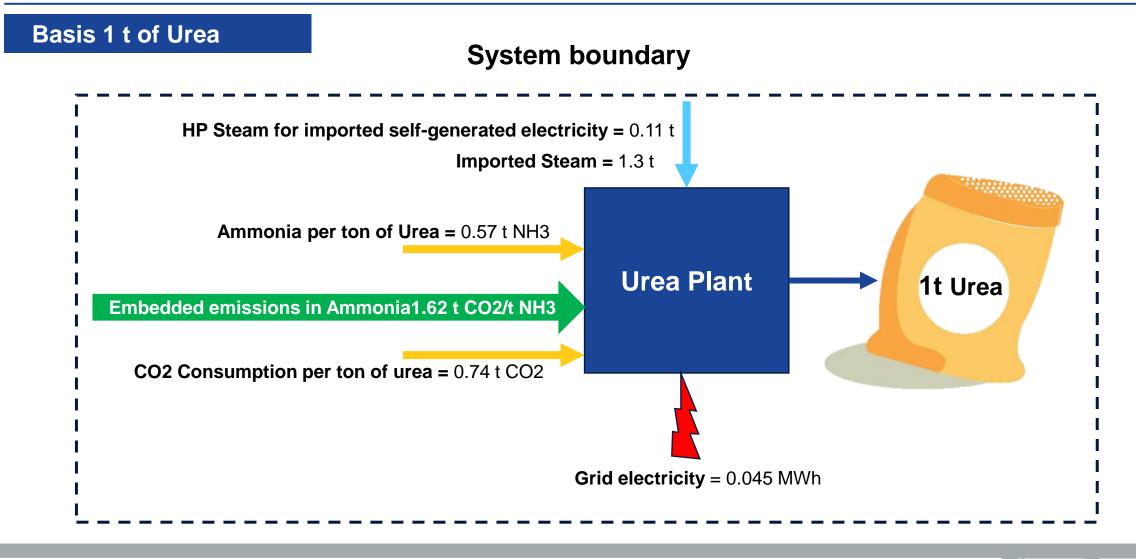
• CO2 emissions from grid electricity = Amount of electricity consumed * EF for Egyptian grid = 0.1 * 0.411 = 0.0411 tCO2

Total scope 2 emissions = 0.0411 tCO2

Scope 3 emissions = 0 for CBAM simple goods

Total embedded emissions = Scope 1 + scope 2 = 1.62 (tCO2)

Ammonia embedded emissions = 1.62 t CO2/tNH3


Project Number

ED18403

Confidential - Client Only: EBRD OFFICIAL USE

SETTING THE BOUNDARY FOR ESTIMATING EMBEDDED EMISSIONS IN UREA (2)

16 © Ricardo plc November 2023

Project Number

ED18403

Confidential - Client Only: EBRD OFFICIAL USE

RICARDO

CALCULATING EMBEDDED EMISSIONS IN UREA

Scope 1 emissions:

- Process emissions = 0 tCO₂
- CO_2 in imported steam = Amount of steam * EF = 1.3 * 0.115 = 0.15 t CO_2
- CO₂ in steam equivalent to imported electricity = 0.11 * 0.115 = 0.013 t CO₂

Total scope 1 emissions = 0.163 tCO2

Scope 2 emissions

• CO₂ emissions from grid electricity = Consumed electricity * Grid EF = 0.045 * 0.411 = 0.018 tCO₂

Scope 3 emissions

CO₂ form Ammonia precursor = Amount of ammonia consumed per t Urea * Embedded C in ammonia

ED18403

= 0.57 t NH3 * 1.62 = **0.923 t CO₂**

Total emissions = Scope 1 + Scope 2 + Scope 3 = 0.163 + 0.018 + 0.923

Urea embedded emissions = 1. 1 t CO_2 / t Urea

DATA USED FOR CALCULATING EMBEDDED EMISSIONS IN AMMONIA/ NITRIC ACID PLANTS

Characteristics of Ammonia / Nitric acid plants

- Thermal energy requirements for Nitric acid production is provided by steam obtained from waste heat of the exothermic oxidation reaction. There is no export of steam from SMR.
- Additional electricity is generated from carbon free steam in the nitric used and used within the plant. There is no export of electricity from SMR
- There is no export of CO2 from SMR and therefore no steam required to drive the compressor. Process CO2 discharged to atmosphere.

Data used in calculations:

NG fuel to auxiliary will be reduced from 370 Nm3/t NH3 to 86 Nm3/tNH3 (due to reduced steam requirements)

NG feedstock = 685 m3/t NH3

NG fuel to reformer = 403 m3/t NH3 product

EF for NG (IPCCC default value) = 56.1 tCO2/TJ

Grid Electricity consumption = 0.1 MWh/ t NH3

Consumption of steam from NA header = 1.22 t steam for use within NA plant + 0.211 t steam to generate electricity.

18 © Ricardo plc November 2023

Project Number

ED18403

Confidential - Client Only: EBRD OFFICIAL USE

CALCULATING AMMONIA EMBEDDED EMISSIONS IN AMMONIA / NITRIC ACID PLANTS

Scope 1 emissions:

- Process emissions = NG Feedstock * LHV * EF = 685 * 38 * 56.1 /1,000,000 = 1.44 tCO₂
- CO_2 from combustion of reformer fuel = Amount of fuel * LHV * EF = 403 * 38 * 56.1 /1,000,000 = 0.86 tCO₂
- CO_2 from combustion of boiler fuel = 86 * 38 * 56.1 / 1,000,000 = 0.183 t CO_2

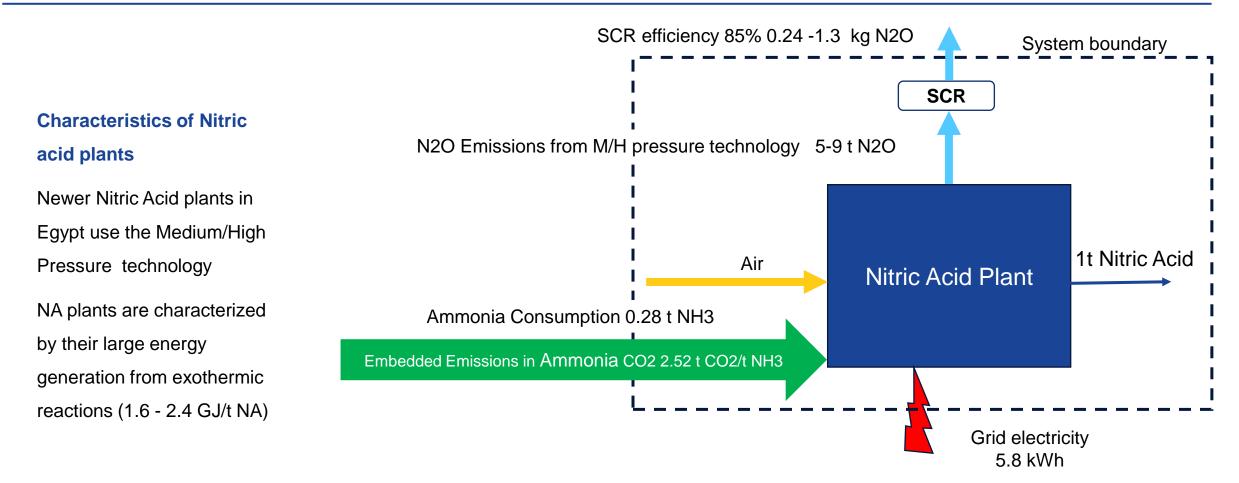
Total scope 1 emissions = 2.48 tCO₂

Scope 2 emissions

• CO_2 emissions from grid electricity = 0.1 * 0.411 = 0.0411 tCO₂

ED18403

Total scope 2 emissions = 0.0411 tCO₂


Scope 3 emissions = 0 for CBAM simple goods

Ammonia embedded emissions = 2.52 t CO2/tNH3

Project Number

SETTING THE BOUNDARY FOR ESTIMATING EMBEDDED EMISSIONS IN NITRIC ACID

20 © Ricardo plc November 2023

Project Number

Confidential - Client Only: EBRD OFFICIAL USE

ED18403

Rescarus Environics.

CALCULATING NITRIC ACID EMBEDDED EMISSIONS IN AMMONIA /NITRIC ACID PLANTS

Scope 1 emissions:

 Process emissions consist of Nitrous Oxides in tail gases after Selective Catalytic Reduction (SCR) = 0.0007 (av) t N2O/t NA * 273 tCO2e/ tN2O (GWP) = 0.19 tCO2e

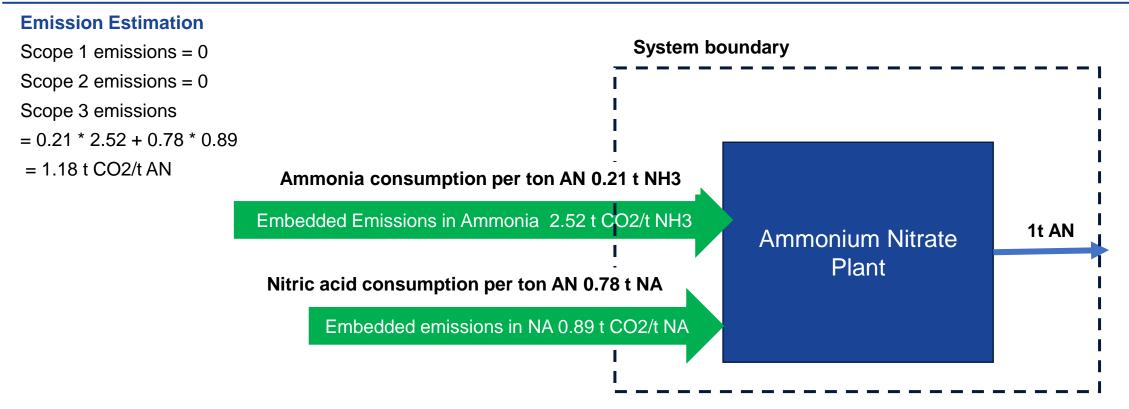
Total scope 1 emissions = 0.19 tCO2

Scope 2 emissions

• CO2 emissions from grid electricity = Electricity consumption * EF = 0.0058 * 0.411 = 0.0024 tCO2

Total scope 2 emissions = 0.0024 tCO2

Scope 3 emissions


• CO2 emissions from ammonia = 0.28 * 2.52 = **0.7 t CO2/t NA**

ED18403

Embedded emissions in Nitric Acid = 0.89 t CO2/t HNO3 (100%)

ESTIMATING EMBEDDED EMISSIONS IN AMMONIUM Nitrate

Embedded emissions in Ammonium Nitrate = 1.18 t CO2/t AN

22 © Ricardo plc November 2023

Project Number

ED18403

DECARBONISATION OPTIONS AND THEIR IMPACT

23 © Ricardo plc November 2023

Project Number

ED18403

Confidential - Client Or OFFICIAL USE

REDUCTION OF THERMAL ENERGY CONSUMPTION

Implementing Energy Efficiency projects

- Industry benchmark for CO₂ from fuel consumption is 1.66 tCO₂/t NH3
- There is a potential for reducing Fuel CO_2 by implementing Energy Efficiency projects.
- A maximum of 2-3% reduction can be achieved through the following projects

Potential projects

- Hydrogen recovery from purge gas to use as fuel
- Optimize the steam cycle
- Minimize steam losses
- Increase efficiency of electricity generator
- Improve boiler and furnace efficiency

Impact on CBAM

By decreasing fuel emissions by 0.04 tCO₂/t NH3, embedded emissions in ammonia will become **1.58 tCO₂/t NH3**. CBAM cost reduction = \in 3.2 / t NH3 (based on ETS cost of \in 80/t CO₂)

Confidential - Client Only: EBRD OFFICIAL USE

IMPLEMENTING MEASURES TO REACH BAT BENCHMARK FOR PROCESS EMISSIONS

Implementing BAT for the SMR (Steam Methane Reforming) plant (Grey Hydrogen)

- BAT benchmark for process emissions is 1.24 tCO2/t NH3
- Current industry benchmark is between 1.24 1.48 with an average of 1.44 tCO2/t NH3
- Potential CO2 reduction is the difference between the Industry benchmark and the BAT
- A maximum of 14% reduction can be achieved by implementing projects that maximize ammonia production and minimize losses, such as:

Potential projects:

Replace catalyst of ammonia synthesis reactor with more efficient catalyst Ammonia recovery from purge gas Improve conversion efficiency in primary reformer Improve maintenance to minimize fugitive ammonia emissions.

ED18403

Impact on CBAM

By decreasing process emissions by 0.2 tCO2/t NH3, embedded emissions in ammonia will become **1.42 tCO2/t NH3**. CBAM cost reduction = € 19.2 / t NH3 (based on ETS cost of € 80/t CO2)

Confidential - Client Only: EBRD OFFICIAL USE

REPLACE 15% OF THE HYDROGEN USED IN AMMONIA SYNTHESIS BY GREEN HYDROGEN

Replacement of 15% Grey Hydrogen by Green Hydrogen

- Each kg of Grey Hydrogen produced requires 4.5 kg of NG
- Each t ammonia produced requires 176 kg H2
- A reduction of (176*0.15*4.5) 118.8 m³ NG can be achieved with corresponding CO₂ reduction of 0.25 t CO₂/t NH3

Applicability

Implementation of this project does not require extensive rehabilitation of the primary reformer

Green electricity can be transported through the national grid

Produces large reductions with minimum cost/t CO₂ abated

Impact on CBAM

By decreasing CO_2 emissions by 0.25 t CO_2 /t NH3, embedded emissions in ammonia will become **1.37 tCO_2/t NH3**.

ED18403

CBAM cost reduction = \in 20/ t NH3 (based on ETS cost of \in 80/t CO₂)

Associated risks

- High capex although relatively low cost modifications on primary reformer due to reduced Feedstock.
- High Opex due to cost of green electricity.
- Need for large amounts of demineralized water for electrolyzers – city network not allowed as well as irrigation canals.
- Plant location should be next to sea or sewage treatment plants which is used by some plants as a renewable source of water.
- Cost of desalination plant should be accounted for.
- Process CO2 will be reduced additional cost of capturing CO2 from flue gases to maintain Urea production level.

ARICARDO

Project Number

DECARBONISATION OPTIONS AND THEIR IMPACT

IMPACT OF DECARBONIZATION ON EMBEDDED EMISSIONS AND DEVIATION FROM FREE ALLOWANCE

	Embedded Emissions, tCO2/tNH3						Doviation	
Product	Current	Energy Efficiency	Reduce Process Emissions	15% green hydrogen	All 3 measures	Free allowance	Deviation from free allowance	CBAM Cost \$/t NH3
Ammonia (A/U plants)	1.62	1.58	1.48	1.37	1.19	1.57	-0.44	0
Ammonia (A/NA plants)	2.52	2.49	2.32	2.27	2.17	1.57	1.6	128

27 © Ricardo plc November 2023

Project Number

Confidential - Client On OFFICIAL USE

ED18403

RICARDO

FREE ALLOWANCE PHASE OUT

28 © Ricardo plc November 20

Project Number

ED18403

FREE ALLOWANCE PHASE OUT FOR FERTILIZER SECTOR

Impact of phase out on deviation from free allowance for the various decarbonization projects, tCO2/t NH3

Case 1: reduction of thermal energy consumption

Case 2: reduction in process embedded CO2 to BAT value

Case 3: 15% replacement of grey hydrogen by green hydrogen All: all the above

Minus sign means potential for issuance of carbon credits

	Current	Case 1	Case 2	Case 3	All
2023	0.05	0.05	0.05	0.05	0.05
2026	0.16	0.12	-0.08	-0.09	-0.33
2028	0.54	0.50	0.30	0.29	0.05
2032	1.62	1.58	1.38	1.37	1.13

Project Number

ED18403

Confidential - Client Only: EBRD OFFICIAL USE

RICARDO

IMPACT OF CBAM AND CONCLUDING REMARKS

30 © Ricardo plc November 2023

Project Number

ED18403

IMPACTS OF CBAM - FERTILISERS SECTOR AND CONCLUSION

Only precursors have ETS free allowances.

CBAM cost on a complex good such as Urea will depend on the amount of precursor in the complex good. In the case of The proportion of ammonia in Urea is **0.57** fraction of ammonia in Urea.

CBAM cost in €/ t Urea = deviation from free allowance tCO2/t ammonia * fraction of ammonia * average ETS cost in 2022

= (Embedded emissions – Free allowance) (tCO2/tNH3) * 0.57 * 80 (€/t CO₂) = cost €/t Urea

In 2032, CBAM cost after implementing all proposed projects

= 1.19 (tCO2/tNH3) * 0.57 * 80 €/t CO₂ = € 24.2 /t Urea.

Companies will have to weigh their options based on a financial feasibility that would take into consideration factors such as:

- Investment and operating costs of implemented decarbonization project
- Potential tapping into non-CBAM markets
- Current and future CBAM cost
- Change in ETS cost of CO₂

© Ricardo plc November 2023

REFERENCES

- Guidance Document on CBAM Implementation for importers, Aug 2023
- European Commission webinar takeaway on CBAM for Fertilizer Industry, 2023
- CELEX_32021R0447_EN_TXT CAP
- Assessment of low carbon hydrogen production in Egypt, UNIDO, 2022
- National Greenhouse Gas Inventories on N2O, USEPA, 1999
- Studie Ammoniak, DECHEMA, 2022
- IPPC-BREF manual for fertilizers, 2007
- Benchmarking Egyptian Fertilizer Industry, UNIDO, 2014

THANK YOU!

Shadia Elshishini

E-mail: sselshishini@gmail.com

33 © Ricardo plc November 2023

Project Number

ED18403

Confidential - Client On OFFICIAL USE

